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Theoretical study of acoustic interaction affecting the dynamics and stability of limited fluid volume in zero-gravity is
carried out. Two main acoustic effects on a fluid surface are analyzed. The first is the change of dynamic characteristics
of fluid sloshing in zero-gravity due to acoustic loading; the second is the movement of a “fluid cork” along the tube
(acoustic pumping). Mathematical analysis is based on the averaging of original free interface problem. This allows
to reduce a free interface problem to a free boundary problem on surface waves with additional nonlinear terms in the
dynamic condition on an unknown surface. Nonlinear phenomena are described per structuring a series of analytical and
numerical —analytical solutions. These examples concern the cylindrical vessel with gravity vector along the directrix and,
hence, comparison of the results with solutions of capillary problem becomes available. The experimental conclusion that
acoustic loads can give rise to equilibrium shapes contrasting to capillary surfaces is confirmed. Also the phenomena
of acoustic stabilization and destabilization of “fluid —gas” interface are demonstrated including the case when such a
destabilization causes the acoustic pumping.

IIpoBeaeHO TeopeTHYeCKOe UCCIENOBAHNE aKyCTUYIECKOTO B3AUMOAEHCTBUA, ONPEAeNAIOMero ANHAMUKY U yCTOHYHBOCTH
OrpaHUYeHHOro o6beMa XKUAKOCTH B HEBeCOMOCTH. llpoaHalmsupobBaHbl ABa OCHOBHBIX THIIa BOBAEHCTBUA aKyCTUYIECKO-
ro mons Ha CBOGOAHYIO IpaHully. IlepBBIN COCTOUT B MSMEHEHUM AMHAMUYECKUX XApPaKTEPUCTUK IIIECKAHUH XKUAKOCTU
B HEBECOMOCTH IIOJ BOSAEHCTBUEM aKyCTUUEeCKOTO HarpyKeHUsA. BTOpol accouMupyeTcs B TEXHUYECKUX NPUIOKEHUAX C
[BIKEHNEM “KUAKON Npo6ku” BAoIb TpyObl (akycTHdecKuH Hacoc). MaTeMaTHyecKul aHalIUs GasupyeTcsa Ha ycpeaHe-
HUM UCXOOHOH 3ajadi cO CBOGOAHON IpaHullell pasAela ABYX CPeld, YTO IOBBOIAET CBECTHU 3ajady K sajade co CBOGOLHON
rpaHullell O IOBEPXHOCTHBIX BOIHAX ¢ ACMONHUTENLHBIMU YIeHaMi B JUHaMUYECKOM yCIOBHN Ha HEUBBECTHOHU CBOGOLHON
noBepxHocTH. IlennuelHble 5@ PekTH ONUCHLIBAIOTCA Iy TEM IOCTPOEHNA PAAa aHAINTUYECKUX U YUCIEHHO-aHalnTUYeCKUX
pelleHnN 5Tol safadn. [IpUMepBl OTHOCATCA K ClyYalo HUINHAPUYECKOTO COCyAa, KOTAa BEKTOD I'PAaBUTalNl HallpaBieH
BAOIb OCH LWIMHApa, YTO MNOBBOIAET CPABHUTL UX C PEUIEHUAMU Bajadld o Kanumiape. TeopeTndeckme MccCilefOBaHUA
NOATBEPKAAIOT BBIBOALI, [OIyUEHHBIE B BKCIEPHMEHTAX, O TOM, YTO aKyCTHUYECKOe BOBAEHCTBHE MOXKET NPUBOAUTL K
[MOJIOXKEHNAM DABHOBECUS Ha IpaHUlle pasfAella, KOTOPBIE OTINYAOTCA OT KallliIAPHEIX HoBepxHocTel. KpoMe Toro, npo-
[eMOHCTpOBaHBL 5P ek TH AUHAMUYIECKON aKyCTUYECKON CTAabHINSalnl I AeCTabHINSallii IOBEPXHOCTH pasena, BKIIOYast
ciydall, Korfa fecTabunusanusa obyciaBinBaeT 5PpPekT akyCTUUeCKOTO HACOCA.

IIpoBeaeHo TeopeTUYHE AOCIIAKEHHA AKYyCTUYHO! B3AEMOAIL, fKa BUSHAYAE AUHAMIKY Ta CTIHKICTL O06MeEXeHOro ob’eMy
piauHu y HeBaromocTi. IIpoaHalisoBaHO [Ba OCHOBHMX THUIM BIUIMBY aKyCTHHYHOTO I[OJA Ha BlIbHY rpaHuno. Ilepmui
nonArac y SMiHl AMHAMIYHMX XapakTepUCTHK INeCKaHb PIAMHU y HEBArOMOCTI Hifl BINIMBOM aKyCTUIHOIO HaBaHTAXKEHHI.
Opyruil acoLiloeThCA y TEXHIYHUX 3acTOCyBaHHAX B PyxoM “piakol npobku” Bsgobxk Tpy6u (akycTHduHHN Hacoc). Mare-
MaTHUYHUI aHalls 6a3yeThCa HAa OCEpEAHEHH] BUXIAHOL 3aa4l 3 BUIBHOIO IPAHUIIEIO PasAllly JBOX CEPENOBMUII, IO AOBBOIAE
3BECTH 3ajady [0 3ajadvl 3 BUILHOI IPAHULIEIO MPO MOBEPXHEBl XBWIL 3 JOAATKOBUMU WIEHAMH y JUHAMIYHIL YMOBI Ha
HEBIAOMIN BlIbHIN moBepxHi. IleninifiHl edpekTH OMUCYIOTHCA Yepes MobYNOBY PAAY AHAMTUYHUX | YUCENbHO-aHAIITUIHIX
posB’askiB uiel sagadi. [Ipuknaau HaBeAeHO A BUNAAKY UIIIHAPUYHOL MOCYAUHU, KOIU BEKTOP TpaBiTalmil HanpaBleHUN
B3AOBXK BiCl HUIHpa, IO JOSBOIAE HOPIBHATH 1X 3 POBB’A3KaMU 3a4ad4l Npo Kaluap. TeopeTuvHl JOCHIIKEHHI TIATBED-
JUKYIOTBH BUCHOBKHM, OJ€pKaHl y eKCllepuMeHTax, IpO Te, IO aKyCTHUYHUN BIUIMB MOXE NPUBBOAUTH A0 IOJ0XKEHb PIBHOBArK
Ha TpaHUll POBALY, AKl BIAPISHAIOTHCA Bl KANUIAPHUX MOBEPpXOHb. OKPIM TOro, NPpOAEMOHCTPOBaH] €pekTU AUHAMIYHOL
akycTU4YHOL cTablmizalil Ta AecTabliisanil HOBEpXHI PO3ALLY, BKIIOYAKOYN BUIA0K KON AecTabliuizamia 06yMoBIoe edekT
aKyCTUYHOTO HACOCA.

NOMENCLATURE librium shape (averaged in time profile of inter-
face);
o Q(W(x,y,2)<0) is the interior of a tank;
e S1(S5) is tank’s wall touching the gas;
e (Q2(t) is fluid subdomain in Q;
e S5 is tank’s wall touching the fluid;

t) and t) are gas subdomains;
@) @s(t) & e 5y CS7 is a sound vibrator;

o X(t): &(x,y,2,t)=0 (or Xq1(t), Xa(t) for the

third problem) are “fluid —gas” interfaces; o @iy, %1), i=1,2, are the velocity potentials

of gas and fluid;

o O)(N(e,y,2,7)=0), Bi(r)(x=Hily 2 7)), o [ is size of the tank;
t=1,2, are averaged interfaces describing the ’
slow-time interface fluctuations; o pi(x,y,2,t), i=1,2, are densities of gas and flu-

id;
o Yo(Colw,y,2)=0, 2=Hyo(y,z)) (or Xgi(x =
= Hoi(y, 2)), i=1,2) is capillary — acoustic equi- o pi(x,y,2,t),i=1,2, is pressure;
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v 1s frequency of acoustic excitation;

n is the outer normal to @ (or outer normal to
()2 on the interface X);

e o is the coefficient of surface tension,;
e g 1s virtual gravity acceleration;

e 7v;, t=1,2, are Theta’s constants;

® poi, 1=1,2, are averaged densities;

o 0¥ is “fluid—gas—tank” contact line;
e « 18 “fluid —gas—tank” contact angle;
e K1+K, is mean curvature;

e pop 18 “atmospheric” pressure;

e ¢ is the sound speed in gas;

e Bo=gl?pys/0 is Bond number;

e k=vl/cis wave number of acoustic field;

e The expression Iz means a derivative of func-
tion F' by variable z.

INTRODUCTION

A limited fluid volume occupying halfly a tank of
some vehicle (missile, marine tanker, petroleum cis-
tern etc.) or orbiting satellite (e. g., spacelab or shut-
tle) performs a complete wave motion associated with
mobility of its free surface (sloshing). In ground con-
ditions the sloshing is caused by dominating gravity
and inertial forces. In zero-gravity these factors are
sufficiently small to effect the sloshing. Then the sur-
face tension is the only primary force returning the
fluid volume in its unperturbed stationary capillary
equilibrium position. The another short-life excita-
tions having determinated or random nature never
lead to stabilization of capillary shape. Typically,
they form the accident waves and destroy continuity
of the media. There exist two engineering problems
involving fluid sloshing in zero-gravity that motivate
the study of behavior of a fluid volume in an orbiting
vehicle. The first is the problem of keeping of flu-
ids in prescribed subdomain of a vessel (positioning).
The second is creation of driving forces to achieve
pumping between the tanks (pumping). The usual
way to overcome these technical problems i1s based
on use of either active methods (acceleration of vehi-
cle, electromagnetic fields, ejecting membranes etc.)
or passive devices suppressing the fluid (partitions,
obstacles, membranes, etc.). Both methods require
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the additional constructions and devices with rather
massive components.

A number of experimental studies, in which the ef-
fect of high-frequency periodic loading on fluid slosh-
ing is examined, allows one to suggest the use of vi-
brations as an efficient approach for actuation of the
fluid and solving the management problems. The ef-
fect of sound (or vibration) on a limited fluid volume
in microgravity can change the dynamic features of
free surface [1-8]. Devices producing the acoustic or
vibrational fields are not massive and do not require
the considerable energy expenditure. In addition,
if the acoustic field produces an effective pressure
(acoustic radiation) positioning the fluid in container
then the dynamics of container (and, of course, the
vehicle motions) does not undergo a change [1, 8, 9],
therefore no orbit correction is required. However,
implementation of acoustic methods is questionable
without detailed preliminary theoretical investigation
of the problem. The reason for this state of art is
the rise of paradoxical phenomena in behavior of the
sloshing in tank under vibroloading. The papers be-
low report the distortion of capillary forms visualized
as craters or fountains on a free surface [2,3,5,6], sta-
bilization and destabilization of th efree surface at-
tended by active evaporation from “fluid —gas” inter-
face (for cryogenic case) [1,4-6,9,10], deformation,
levitation, rotation and the destroying of fluid drops
in standing acoustic field [7,8,10] etc.

In this paper we develop an analytical approach
based on the methods of theory of sloshing in micro-
gravity. It allows us to examine some of the men-
tioned phenomena. Originating from the original hy-
drodynamic problem on coupled flows of two com-
pressible media we apply an asymptotic method and
averaging technique to derive a new free boundary
problem (asymptotic model) describing the slow-time
interface vibration. The analysis of analytical and
numerical —analytical solutions of this free boundary
problem gives the explanation of nature of a number
of nonlinear vibroacoustic phenomena.

1. ACOUSTIC RADIATION PRESSURE AS A
GOVERNING FORCE

In fig. 1 the three typical situations involving the
sound loading for control of a fluid volume in mi-
crogravity are presented. They are associated with
levitating, destroying or assembling drops, stabiliza-
tion of shape of fluid domain and pumping of bound-
ed fluid volume (“sliding fluid cork”) along a tube.
On contrary to vibrations of the vehicle, this “vi-
bromethod” does not involve the vessel in a coupled
pulsation. Local pulsations of vibrating subarea on
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Fig. 1. Three implementations of sound control method in zero-gravity conditions:

a — assembling fluid drops;

S1 are transmitted by standing acoustic wave in @
upon the “fluid —gas” interface. This standing wave
fluctuates slowly in time-varied gas domain @1(¥)
driven by the slow-time sloshing of reflecting surface
(interface) X(¢). In addition, standing acoustic field
yields in ()1 a “radiant” energy implying itself a sta-
tionary (in sense of averaged pulsations) acoustic ra-
diation pressure as well as acoustic vibration. This
means, that the pressure distribution upon X(¢) has
both quick-time (pulsation) and slow-time (averaged
acoustic radiation pressure fluctuations) components.
The pressure distribution determines the sloshing of
the reflecting interface. The above speculations ex-
plain the reasons of studying of mutual “interface—
acoustic radiation pressure” influence.

Influence of the acoustic radiation pressure on the
surface waves is low-investigated in experiments. The
most of works study a special class of ultrasonic phe-
nomena associated with either ultrasonic capillary ef-
fect (fluid flow in thin narrow flexible tube caused
by progressive elastic waves along it) or acoustical-
ly driven jet emergency from the free surface when
local ultrasonic vibrator is situated near the bot-
tom. Moreover, only few papers examine the effect
of standing acoustic field onto “fluid — gas” interface.
Just these investigations concern the subject of our
research.

We should distinguish two different situations of
“standing acoustic wave —interface” interaction. The
both should be referred to pure microgravity hy-
dromechanics. The first one appears when the acous-
tic wavelength is longer then characteristic spatial
size of interface. For the another situation the
wavelength and the interface length are comparable.
Acoustically levitated large drops and acoustically
forced interface sloshing are two typical examples of
this last situation. One is evident, that the key prob-
lem in the analysis of these microgravity phenome-
na is the question of stability of the interface due to
acoustic load.

Preliminary the

analysis  in experimental
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b — positioning a fluid domain;

¢ — pumping a “fluid cork”

works [1,3,7,11,12] uses either phenomenological or
energetic approaches to predict the interface insta-
bility. Estimation of the acoustic radiation energy
affecting the evaporation allows to explain qualita-
tively the fluid pumping when the exciting frequency
is situated in the neighborhood of the first acoustic
natural tone in gas. However, these approaches are
not able to describe the interface profile and calculate
the frequency range where instability of the interface
occurs.

The another approach is to consider a lumped ener-
gy amount (surface tension, gravity plus the energy of
acoustic radiation pressure) to derive a minima prin-
ciple for “potential energy”. Mentioned approach was
proposed for some classes of the surface wave prob-
lems in [13]. Such phenomenological method in [11]
was used to analyze the stability of levitated fluid
drops in crossed standing acoustic waves due to a cho-
sen fluctuation of drop’s shape. In discussed paper
the one-parametric family of fluctuations was chosen
and the problem was reduced to minima problem for
a function of one variable.)

We consider the problem on “gas—fluid” interface
sloshing exposed to acoustical excitation by vibrator
situated in gas domain. When launching from mod-
el disposition of continuum media in accordance to
scheme shown in fig. 1,b we implement an averag-
ing technique coupled with methods developed for
classical capillary sloshing problem [14—16]. This
approach allows us to overcome the principal theo-
retical difficulties and apply well-known spectral ap-
proach used to analyze the stability of capillary equi-
libria [16]. We get the problem on capillary — acoustic
equilibria (profile of the interface is determined by a
balance of surface tension, gravitation, and acous-
tic radiation pressure). This equilibrium interface
can be treated as an averaged in time interface’s
shape 1f steady-state motion of “fluid—gas” system
The capillary —acoustic equilibrium shape
differs from capillary one. In this paper we show
that the relative slow-time sloshing with respect to

occurs.

71



ISSN 1028-7507 Axycrwanmy Bicauk. 1999. Tom 2, N 3. C. 69-83

this equilibrium surface is also different from capil-
lary waves in tank and have drastically different hy-
drodynamic characteristics of these “acoustic” slosh-
ing (natural frequencies, natural modes, stability re-
sponse due to diverse excitations etc.).

The last experimental investigations of levitation
of the drops in standing acoustic waves conducted
in spacelab USML-2 [9, 11] confirmed the strong de-
pendence of stability of the drop on acoustic radia-
tion. The analysis of this phenomenon being done
in [7,8,10,11] is based on theoretical estimation of
distribution of the acoustic radiation pressure across
the drop’s surface. Such approach proposed earli-
er in [13] introduces the additional nonlinear terms
corresponding to acoustic radiation pressure in gov-
erning equations. Mentioned terms can be treated as
the averaging vibroforces first proposed by P. Kapit-
sa [17] for analysis of vibrostabilization of vertical
pendulum (see also [18]). The experimental results
obtained for rigid body dynamics are in good agree-
ment with vibrophenomena occurring in hydrody-
namic systems [4—6]. This means that we can ex-
tent some results of rigid body vibromechanics onto
the examined case accounting only the basic balanc-
ing forces, namely, the surface tension, gravitation
and the acoustic radiation pressure. Also, it should
be noted that the model of perfect compressible fluid
and gas is applicable to describe the basic nonlinear
phenomena known from experiments. Hereinafter we
consider the potential flows.

Note, that similar assumption (inviscid potential
flows, gravity field and surface tension) forms the
base of classical free boundary problem on sloshing
of incompressible fluid in vessels (capillary —gravity
waves):

Ap=0 in Q(1),

dp

s 0 on S(t),

/ d@) = const, (1)
Qt)

dp o 5,t

on __|V€| on X(t),

dp

%2 4 5(Ve) +AE=0 on (1)
where the interface is X(t) : &(x,y,z,1)=0. The ve-
locity potential ¢(z, y, z,t) in general should be deter-
mined; A is the operator of potential forces (gravity,
surface tension etc.). This problem (1) differs from
the problem below so long as it neglects the com-
pressibility.

Some aspects of theory of sloshing were developed
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in [15,16,19]. This theory used to be implement-
ed into industry problems associated with coupled
“body —fluid” motions and calculation of the dynam-
ics of capillary fluid in spacecraft vehicles. The prob-
lem on capillary equilibrium shape follows immedi-
ately from (1) if ¢ and £ are not dependent on ¢. We
refer the readers who interest in the results of corre-
sponding theory to the transactions [16,19-23].

In order to investigate the sloshing exposed to high-
frequency excitation we should take into account the
compressibility. Preprint [24] presents the elements of
such theory for mathematical problems modeling the
“vibro-sloshing”. Krylov—Bogolyubov—Mitropolskii
averaging technique is used in developed theory. In
the present paper we follow the same way to ana-
lyze a coupled “gas—fluid” sloshing noted in fig. 1 as
problems b and ¢. The main governing free bound-
ary problem derived from the original hydrodynamic
problem contains the nonlinear terms coinciding with
the expression for Langevin acoustic radiation pres-
sure. These terms appear in dynamic condition on
“fluid —gas” interface.

2. PROBLEM ON SLOSHING OF COMPRESS-
IBLE MEDIA DUE TO ACOUSTIC EXCITA-
TION. ASYMPTOTIC (AVERAGED) PROB-
LEM

We examine wave motions of “fluid Q2(¢) -
gas (J1(t)” interface X(t). The gas and the fluid are
suggested to be compressible. The sound vibrator is
situated on part of the wall Sy in way to be always
touching only gas domain @;. It produces an acoustic
field in the gas. Note, that for all numerical exam-
ples we consider the following parameters: frequency
range of acoustic field 1=-3 kHz, Bond numbers 0+-30
for the characteristic size of the tank 0.05+1 m.

2.1. Statement of the problem

Governing equations in the both continuum media
(i=1,2) are the following:

% +div(p; V) = 0,

ofn
v ( ot

p \i
pi = poi (p—) in Q;(t).

0¢

1 ) B
T3 (Vei)" +g2 ) ==Vpi, (2)

Zero Neumann (no-slip) condition is fulfilled on the

wall of the tank Q:

ofn
on

=0 on SZ', (3)
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kinematic and dynamic boundary conditions should
be satisfied on interface:

Dp; _ i
on V¢

—pr=—-p2+o(K1+K3) on X(¥)

on X(t), i1=1,2,
(1) )

along with the condition on contact line:

(YW, V§)
VW]

- =cosa|VE| on 9X(t). (5)
The distribution of normal velocity Vy(z, y, z) sin(vt)
on the vibrator

0 .
P1% = poriVo(z,y, z)sin(vt) on Sy

(6)

completes this interface value problem.
The solution of (2)—(6) is the set of functions
vile,y, z,t), pi(e,y, 2,1), ps(x,y,2,t) and &(z, y, 2, 1).
Let [ be a characteristic size of @ and t,=1/v be a
characteristic time. Then the dimensionless problem
takes the following form:

ot 2

N\ L/
pi = (p—l) in Qi(t),

Poi

Op; 1
piV ( AR (Vegi)® + Bo 1‘1/*_2) = —Vpi,

Opi

on =0 on SZ',

Opi _ _ &t
on |Vl

—P1p£ = —ps +v7 3K +Ks), on X(1),

P02

on X(t),

91 _

sup |Vo(z,y, 2
281 _sup View )|
on

Clo
X %V(r,y,z)sint on Sy,
L (IW, Ve
VW V¢

where

=cosa on IX(t),

V($aya Z) = VO($aya Z)/SUp|V0|,

2,23
vi=v*lPpoa/o.

2.2. Asymptotic analysis

The dimensionless problem (7) has several small
parameters. One of them e=sup |Vo|/(cpo) K1 ex-
presses the smallness of amplitude of vibrations in gas
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domain with respect to sound speed M =sup |V5|/c
what is typically correct in acoustic approximation
of compressible flow. Value of pg is actually the rela-
tion between M and ¢:

M

= — ~ 1.
Ho ¢ |/’L0|

The Bond number Bo implies the relation between
gravitation and surface tension.

We assume, that other small parameters depend on
¢ according to the following relations:

poL pe,  |pi|~1,

P02 (8)
vl = e, |~

The first relation implies the smallness of gas density
with respect to fluid density. This means, that the
second order component of pressure in ()1 yields the
third order terms on interface when interaction be-
tween the subdomains occurs. The dimensionless pa-
rameter v 2 is sufficiently small for large v. If V5 =0
the original problem is reduced to the problem on free
coupled vibrations of compressible fluid and gas in a
tank. Natural (eigen) vibration of such system were
investigated in [25]. The analysis of corresponding
spectral problem has shown that each natural mode
of the interface has an infinite set of eigenvalues. The
lowest elements of these sets complete a subsequence
of eigenvalues (sub-spectrum). This sub-spectrum
corresponds to natural motions of the system due
to mobility of the interface; it is close to spectrum
of the problem on capillary natural vibration of in-
compressible fluid. Other eigenvalues correspond to
vibration of the system due to compressibility. They
are sufficiently large-scaled ones.

If t.=v~! « 1 is sufficiently small and wave num-
ber k~1 (v is situated in the vicinity of dominating
natural tone of acoustic pulsation in gas), then value
of the lowest (“sloshing” spectral component men-

tioned above) is ordered as v/ 2 (both the surface
tension and gravitation have order v ? in the dy-
namic conditions). The acoustic radiation pressure
has asymptotic order 62p01/p02 =112 in the dynamic
condition. To provide the similar order between these
three interacting forces we should suggest v %~ 13
or suppose the second relation from (8) to be fulfilled.
That is why g implies the relation between potential
forces (surface tension, gravitation and acoustic radi-
ation pressure):

ol=3 1

vZe?po1pos

V2€2P01

We can use asymptotic technique and the method
of separation of quick-time (pulsation) and slow-time
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components to derive an averaged asymptotic prob-
lem describing the slow-time interface sloshing.

2.3. Asymptotic averaged problem

When introducing the quick-time ¢ and the slow-
time 7=¢3/%t we assume the functions ¢;, p; and &
to be depending on z, ¥, z,t and 7. Then the solution
of (7) can be extended into series

pr =3 2B 1y 2t 7),
k

pi= 3 wy 2t ),
k

5: ng/zg(k/Z)($ayazataT)'
k

)

When setting (9) into (7) (with taking into ac-
count (8)) we reduce the solving of the original prob-
lem to a sequence of the problems with respect to
P F I ey i=1,2, k=0,1,2, ... The low-
est order asymptotic solution depends on zero-, first-,
second- and third-order approximations. The anoth-
er approximations can be found recursively from the
above ones. The averaging procedure selects out two
independent functions determining the slow-time in-
terface sloshing:

q>2(£a Y, z, T):<302>7t =

— 63/2g0(23/2)(l‘, Y, 2,63/2t) + 0(63/2)’
and
((z,y,2,7)=(E)  =Co(x, y, 2, 7)+0(e”).

Finally, we introduce

Sy (x,y,2,7) = go(ll)(x, y,z,T,t)/sint

(here @, is wave function of the acoustic field in gas)
describing the slow-time fluctuation of the acoustic
field in @.

The asymptotic procedure transforms the origi-
nal free interface problem to nonlinear approximate
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(asymptotic) boundary value problem:

A<I>2:0 iIl <Q2>(T),

0P, |
a—n =0 on <SZ>,

0P

a—nz =0 on <52>,

a<1)2 _ C,T

an - |v€| on <E>(T)’

®yr + %(V%)2 + ppn(Bow — (K + K2))+
(@) = (Ve =
= const(7) on (X)(7),

A
VWV

/ d) = const,
<Q2>

Ad; 4+ k*®; =0 in (Q1)(7),

=cosa on IX)(T),

0P,

a—nzo on <Sl>U<E>(T)’ (11)
0% Vi 2)

on 10 k on -

2.4. Asymptotic approximate problem as a slosh-
ing problem

The problem (10), (11) is an analogy of the prob-
lem on sloshing (1). The dynamic condition in the
boundary problem (10) includes the nonlinear oper-
ator A corresponding to a “potential force”

AC = ppa(Bow — (K1 + K2))+

+ i (F (@17 — (T81)%) on (£)(r),
where ®4(z,y,z,7) is the solution of system (11).
Above @4 depends on ®; and ®; depends paramet-
rically on the profile of sub-boundary (X)(7) so long
as it satisfies Neumann boundary problem (11) with
varied (XY (7).

To compare this problem with well-investigated
problem on capillary —gravity waves we should set
V(z,y,z)=0. Then ®y(z,y,z)=const and the de-
rived problem is immediately transformed to problem
on capillary waves in a tank @ [16,24].

The theory of capillary waves in tank consists of the
theory of capillary equilibria and the theory of rela-
tive capillary waves [16,19—23]. If relative capillary
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waves are sufficiently small, the problem is rewritten
to the spectral problem with spectral parameter on
unperturbed free surface [16,19]. The solutions of this
problem describe the natural vibration. When ana-
lyzing the signs of the eigenvalues for various physical
parameters we make the conclusions on the stability
of capillary equilibrium shape.

Below we place our emphasis on case of non-zero
function V(x,y, z).

3. CAPILLARY - ACOUSTIC EQUILIBRIA

The problem on equilibria for given case can be
obtained under the assumption that we have no slow-
time waves on the interface (£ =£(x,y, 2)).

If the free surface (X)(7) does not evolute in time
7 then ®z=const, &=y (x,y,2), (=Co(x,y,2).
The problem (10), (11) is reduced to a stationary

free boundary problem in averaged domain Qg £<Q1>

with unknown free boundary X, £<E>:

p(Box — (K1 + K2))+

1
—1—1(]62((1)01)2 — (V<I>01)2) = const on X,

(12)

—% =cosa [V{y| on 9%,
/ d) = const,
(Q2)

Adqy + k*®g; = 0 inQy,

0Py

an =0 on <51>U20, (13)

od Vi, y,z

67;)1 = Mo ( ky ) on So.

Here Xo(¢o(z,y,z)=0) is the averaged shape of
Y(t). Tt was named as the capillary —acoustic equi-
librium (CAE) shape. The problem (12) implies
the dependence between the shape of averaged sur-
face (shape of fluid) and geometry of the acoustic
field in gas. The first equation from (12) expresses
the relation between surface tension, gravitation and
the acoustic radiation pressure when interacting with
each other.

The solution of the problem (12), (13) consists of
two functions: (o and ®g;. The first function de-
scribes the averaged interface Xy, while the second
one should be found from the inhomogeneous Neu-
mann boundary value problem (for this last prob-
lem a part of boundary coincides with ¥g). More-
over, governing equation on Yy includes the nonlin-
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ear terms depending on ®y;. Thus, wave function
®g; effects the capillary —acoustic equilibrium shape
Yo and the profile of this equilibrium mode effects
this wave function.

We can introduce the nonlinear operator A;(Xg)
and formally reduce the boundary value problem on
capillary — acoustic equilibria to a class of capillary
equilibrium problem with a special nonlinear opera-
tor corresponding to the acoustic pressure distribu-
tion on Xg:

A (Eo) =

(@3 — (V@o1)*) |y, (14)

N | —

where @1 (2, y, 2) is the solution of (13).

The boundary problem (12) can be interpreted as
a capillary problem on equilibria augmented by the
acoustic radiation pressure. This problem takes the
form

1
—(K14+K2) +Box + —A(Xg) = const,
I

_ (VWa VCO)
VWVl

/ d) = const.
(Q2)

Solvability of the nonlinear boundary problem (15)
so far remains an open question even for a tank
of simple shape. It is basically caused by difficul-
ties arising in the analysis of main capillary term
—(K14K3) present in governing equation. The solv-
ability theorems on capillary equilibria were estab-
lished only for cylindrical and conical tanks [16,20,
21,26]. The case of exotic tanks requires detailed
analysis as well as the additional experimental inves-
tigations on orbiting station [20-23].

In this investigation we suppose that ¢ has the
cylindrical shape. This allows us to structure the ana-
lytical and numerical—analytical solutions, and com-
pare the obtained data with known results of capillary
theory.

=cosa on OXg,

(15)

4. STABILITY OF CAE SHAPE

We assume the interface (3)(7) to be initially per-
turbed with respect to CAE. If this displacement is
sufficiently small and the CAE is stable, the mag-
nitude of the interface sloshing is also small. This
means that we can consider the problem on linear
vibration.

Let @) has the cylindrical shape with vertical wall
determined by equation W(y,z)=0 and bottoms
t=—hs; x= hy. Here h; is the height of fluid
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column; h, is the height of a gas (in unperturbed
state). CAE surface can be described by equation
z=Hy(y,z) when the perturbed surface (X)(r) al-
lows the explicit form = H(y, z, 7). Linearized evo-
lutional problem takes the form

A¢g: =0 in Qy,
0
% =0 on (S),
(16)
96 . Hr
on 14 (VHo)®  on 3,
¢27’ + /'L/'Ll'AH =0
where
H
1+(VHo)?
(VH, VHO)VHO]
_—3/2
1—|—(VH0)2)
2
+ n [£* @01 ®o1 o H — (V P01, VP01 ) H+
+k2q>01q>_(v<1>01,v<1>)]20 +
+ BoH on Xg;
(WyHy+W_.H.)
(WyHO,y + WzHO,z)
Hy, VH
_ VL VH) s
1+(VH)?
/dedz:O;
3o
(17)
AP+ E*® =0 in Qo;
0P
6_77, =0 on <51>U50;
0P
6_77, = {@Ol,xxH = Qo1 H . — Qo1 yH y— (18)

— [®o1,09Hoy + <I>01,sz0,z]H} X

x 1/\/1+(VH0)2 on .

Here ¢2=¢a(x,y, z,7) determines the small motion
of fluid; ®(z,y, z, 7) describes the small parametric
evolution of wave function in ¢y occurring due to
the interface fluctuation (z=H(y, z, 7)).

We introduce harmonic dependences of ¢o, H
on7: H(y,z,7)=exp(iAT)h(y, z) and ¢2(z,y,z,7) =
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= iAexp(iAt)¢(x, y, z) [16]. Natural modes h, ¢ and
natural frequencies A can be found from the following
spectral problem:

A¢=01n Qo,
g—i:o on <SQ>,

(19)
" 1+ (VHg)’

—M¢ + ppp Ah =0 on Y.

The problem (19) includes the squares of A. This is
the reason, why the sign of A% subjects the stability of
CAE. If the spectrum is strongly positive then CAE
is stable. Else it is unstable in view of small initial
perturbation. This allows to formulate the following
“dynamic” spectral criterion of stability:

o CAE is stable if and only if A\? >0 for all [.

The another way to analyze the stability of CAE is
associated with studying the pressure balance fluctu-
ation on interface ¥y due to its displacement. If the
pressure balance is always distributed in such a man-
ner that returning forces are directed to keep CAE
shape, then X is stable. Else Xj is unstable. Since
the pressure balance on CAE surface is given by gov-
erning equation (12) and operator A corresponds to a
perturbation of this balance for a small displacement
H the following “static” spectral criterion holds true:
e 1) > 0 for spectral problem Ah = nh.

Implementation of the spectral criteria is the effi-
cient method to establish the stability properties for
diverse capillary problems. In the next section we ap-
ply them to investigate CAE shapes for cases when
the solution can be found in analytical form. In par-
ticular, spectral criteria of stability allow to establish
that

1) planar CAE shape can demonstrate stability un-
der negative over-critical gravitation (stabiliza-
tion);

2) “fluid —gas” interface can demonstrate instabili-
ty (resonance distortion) for positive Bond num-
ber when capillary surface is stable.

5. STABILITY OF PLANAR CAE SHAPE

The spectral problem on capillary sloshing in ver-
tical circular cylinder allows the analytical solution
for right contact angle («=/2). It has been ana-
lyzed by many authors (see, for example, the mono-
graph [16]). In this case capillary surface is planar
and perpendicular to directrix of the cylinder. The
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spectral problem on natural sloshing can be solved
by method of separation of spatial variables. This
means, that (o(z, r,0) =x— Ho(r,0) = 0, Ho(r,0)=0.
Planar capillary surface is stable if and only if

Bo > —aq4, (20)

where J| (2,4)=0; Jp(r) is Bessel function.

Natural frequencies qu of capillary waves can

be found from spectral problem (19) (setting
@olEO(V = 0)), 1.e.
’\127q = pprapgth (a2pehy)(Bo + ag),
sin (21)
hpg(r,0) = Jp(aepqr) cos (p) -

Here we chose the values of characteristic dimension
and characteristic time similar to that for CAE prob-
lem to make the comparison of capillary and capil-
lary — acoustic problems easier.

Below we consider the problem on CAE for
a=7/2. Depending on the shape of acoustic field
modulated on Sy this equilibrium interface state can
be planar or non-planar one. The first (planar) case
will be an object of our detailed analysis.

Under the above assumptions we suggest for a ver-
tical circular cylindrical tank (in numerical examples
it has radius {=0.1 m) to be partially filled by water
and air at temperature 20°C and atmospheric pres-
sure. The gravity is 107°+10" "¢y, the acoustic fre-
quency is 700--2000 Hz.

5.1. Non-planar capillary —acoustic equilibria

The profile ¥y depends on not only contact angle,
but also the distribution of normal velocity compo-
nent on Sy. We show this via numerical examples
calculated under the above assumptions.

If the acoustic field in gas over fluid is pla-
nar (Vo(r,8)=vo=const, e=—wvp/esin(khy), po =
= —sin(khy), V(r,0)=1) then CAE shape is also
planar and problem (12) has the analytical solution
Hy(r,0)=0 (“trivial” solution) with wave function
®o1(x,y, z) =k~ 2cos(kx). If the sound vibrator on
Sp modulates a non-planar acoustic field (and, there-
fore, the right hand side of boundary condition on
Sp is not constant), then CAE shape is not pla-
nar. We present some shapes of Xy calculated when

V(r,0)=0.240.2Jy(&p17) in fig. 2.

5.2. Planar capillary —acoustic equilibrium shape
(Vo=const, a=m/2)

The case of planar CAE shape is convenient object
to study the dependence of interface stability from
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acoustic loading. The case V) =const corresponds to
a vibrating piston situated on the ceiling of the cir-
cular cylinder. For this case capillary and capillary —
acoustic equilibrium shapes coincide with each oth-
er. We consider the natural vibration with respect to
these “trivial” equilibrium profiles. Method of sepa-
ration of spatial variables z, r, ¢ in cylindrical coordi-
nate system gives the natural frequencies and natural
modes in analytical form. One can show that natural
modes h,q (21) are the same for the both cases. How-
ever, the natural frequencies differ from each other.
The frequencies A,, of capillary —acoustic waves are
calculated as follows:

Azz)q = prapgth (apghy) [N(BO + aezz)q)_

1| 1/(nth(nhy)), k* < e, ] (2)
2 | =1/(ntg(nhy)), **>ap, |’
n=/Ik2—a2,|

The stability depends on the sign of /\Zz,q and ng.
For capillary equilibria the squares of natural fre-
quencies are positive if the condition (20) is satisfied.
CAE is stable if the inequality /\Zz,q >0 for all pg holds
true.

We depict the stability response of planar CAE
shape on wave number in fig. 3 (Bo=10, £¢=0.007,
hgy=2). Because of the positiveness of Bond num-
ber the planar capillary equilibrium shape is always
stable. Obviously, planar CAE shape must be stable
for k lower then critical value. This value depends
on type of perturbation. We interchange the pertur-
bations in accordance with the sequence of natural
modes h,,. The ranges of stability for such pertur-
bations are figured on axes pg. Note, that each axis
pq includes the range (Opy, Oy, ). Here the point Oy,
coincides with the origin of axis pg (it corresponds
to k=0). This range is caused by positiveness of Bo
and the point that CAE tends to capillary equilib-
ria when k—0, p(k)—oco. We assume that k~1.
This one requires a speculative choice of £ on axis
Ok to exclude small k from consideration. Minimal
range (O11,0;) appears for hyy. It defines the crit-
ical value k2 on Ok and the first range of stability
I=(k1,k2). When k increases the ranges of stability
and instability alternate each other.

Conclusion 1. If planar capillary interface is sta-
ble then planar CAE shape is stable for sufficient-
ly small k€ (k1, k2). The stability loss occurs for k
situated in right hand to Of;. The first instability
range (ko,2e11) is caused by the first acoustic reso-
nance (a7 is the first natural frequency). Hence,
the instability phenomenon has resonance character.
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Fig. 2. Some non-planar CAE shapes (radial cross-section of circular cylinder):
a-e=0.0025 k=1.1108, a—e=0.0025 k=1.3305;
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Fig. 3. Stability diagram for positive Bond number
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Fig. 4. Stabilization phenomenon: (AB) corresponds to stable planar CAE shape

Analogous phenomenon was found for pendulum on
flexible vibrating unit [18].

We can chose k, ¢ and hy, for which planar CAE
shape is stable under negative over-critical Bond
number (Bo+a%; <0). This effect appears to be pos-
sible in view to existence of post-resonance ranges of
stability (Apq, Ay, ), (Bpg, Bp,) ete.

First such a situation is shown in fig. 4,a (for
hg=1; €¢=0.0035; Bo=-7.5, —=5.0). Here negative
Bond numbers Bo=—-7.5, —5.0 lead to instability of
planar capillary surface due to perturbation by hig
(Bo+a?, <0, Bo—i—aegq >0, pg#11). The stability
ranges (O11,0};) are absent for the both examples.
The next appropriate range k€ (AB) can be found
in the vicinity of the first resonance k> a;. This
range of stable planar CAE shape grows only when
increasing Bo (see two lower diagrams in fig. 4, a).

The second case is shown in fig. 4,b (h,=1.25;
£=0.0025; Bo=-10.5, —7.5, —3.7, 0.0; Bo+&?, <0,
Bo+e2, <0, Bo+aezz,q>0, pq#£11;21).  Here for
k=-10.0 planar CAE shape is unstable when per-
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turbing the modes A1, ho1. It is necessary to use the
second post-resonance range (AB) : k> a; to reach
its stabilization. This range (AB) also grows when
increasing Bo.

Conclusion 2. A high-frequency acoustic field in
gas can stabilize or destabilize “fluid —gas” interface
for various Bond numbers. The dynamic stabiliza-
tion (destabilization) effect is forced by acoustic res-
onance. B

Let us compare the eigenvalues A,, and A, for dif-
ferent indexes pg. Table gives these values for ac-
tual parameters of “water—air” system (/=0.1 m,
Bo=0.0, £¢=0.0025, h,=1.25{, hy=2.0{). One can
see, that the sound effect on natural frequencies with
numbers more than 31 is not principal and the hier-
archy

M <A < A3 <. (23)

holds true for capillary waves. That is why pertur-
bation of natural mode with index 11 (main asym-
metric perturbation of interface) is most dangerous.
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Table. Hierarchy of eigenvalues in “water —air”
system vs acoustic wavenumber

Modes | k=0.0 | k=1.48 | k=185 | k=3.7
hi1 0.4540 0.251 21.60 6.707
ha1 2.075 1.963 1.882 1.588
ho1 4.097 3.992 3.924 1.204
hio 5.400 5.296 5.231 4.087
ha1 10.95 10.85 10.79 10.11

This hierarchy can hold true for planar stable CAE
shape (see k € (k1, k2) in fig. 3 or the second column

of table). Moreover, for mentioned k the addition-

al inequality /\12)(] <X12,q holds true. The last means,

that the acoustic field can lead to decrease of natural
frequencies.

However, the acoustic loading can change the hi-
erarchy (23) (see the last two columns in the table).
For k throughout (ks, k4) (see, fig. 3) the symmetric
perturbation by mode 01 is most dangerous (because
0< A2 < /\Zz,q, pq#£01). Analogous example is present-
ed in the last column of the table.

Conclusion 3. The effect of acoustic loading of in-
terface can be expressed in essential changes of natu-
ral frequencies. It can lead to decrease of the proper
frequencies or to increase of frequencies for the se-
lected surface modes. The selected modes can lose
stability, although, sometimes, the acoustic field can
stabilize a position of balance.

6. ACOUSTIC PUMPING

In this section we extend the previous results on-
to case depicted in fig. 1,c. Vibration of one from
the end-walls of the tube creates a standing acoustic
wave in gas domain. For the first time the prob-
lem was experimentally investigated in [1] where the
term “problem on acoustic pumping in microgravi-
ty” has been introduced in accordance with possi-
ble implementation of acoustic methods for pump-
ing the cryogenic fluid along the tube. This pump-
ing (driven by evaporation phenomenon) is forced by
resonance interaction of acoustic field with the inter-
face, so that the resulting force upon the interface
exceeds the acoustic radiation pressure [1]. Estima-
tion of pressure shows that phenomenon of acoustic
pumping can be explained by intensification of evap-
oration. The increase of evaporation can be affected
only by hydrodynamic instability of sloshing of the
interface touching the pulsating gas.

If free surface X; is stable, the pumping of cryo-
genic fluid does not occur. In order to describe the
acoustic pumping phenomenon we should use a reso-
nance acoustic loading when the sound in @; desta-
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bilizes and destroys the interface 3; keeping at the
same time the interface X5 stable.

Under the above assumptions we suppose, that ¢}
has the form of circular tube and that the difference
of averaged pressures between gas domains @1 (¢) and
Q)3(1) on the interfaces ¥ (¢) and X5(¢) suppresses the
mobility of the mass center of the fluid Q2 (), name-
ly, the small gravity and acoustic radiation pressure
do not force it’s change. This condition can be easy
supplied via relation between the averaged pressure
poz2 in domain Q3(t) and the averaged pressure pg; in
Qi (1):

poz = po1 — (pozghy)/1So]. (24)

Here |Sp| is the area of cross-section of cylindrical
tube.

We suppose that the sound vibrator is situated on
the left hand end-wall Sy of @ and pose the origin of
coordinate system Oxzyz on Sy tracing Oz along the
directrix of the cylinder. The vector g (small gravity
acceleration) is parallel to Oz. The coefficient of the
surface tension ¢ and contact angle are assumed to
be constant.

Let the equation of the interfaces ¥; take the form
r=H;(y,z,t). When repeating the averaging proce-
dure described above in detail we arrive at the prob-
lem on slow-time sloshing:

Aq)z = 0 iIl QQ(T),

05

a—nzo on SQ,

6@2 HiT

T = T o S

1
@y, + §(V<I>2)2 + g X

VH;

BoH| +div——v——
><< ol + lV(1+(VH1)2)1/2)+

%M (k*(@1)* — (V®1)* + P) =0 on X4(r),

1
Par + §(Vsoz)2 + gy X

VH;

X <B0H1 —divm) =0 on Xy(7),

zHyyWy + H,sz _
VW] B

=cosay/1+ (VH;)? on 9%;(1),

(=1)
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Aq)l + qu)l =0 in Ql(T),

we use “the static spectral criteria”:

0®; 0 G U o CAE shape (surface Yo1(x = Ho1(y, z)) plus surface
on on o1 1(7), Yoo(x = Hoa(y, 2)) ) is stable if and only if all eigenval-
o0 V(y, ) ues 7711) and 771(2) determined from the spectral prob-
3—1‘1 = Z’ on Sy, lems
([ (@07 — () + P) dsy =0 7+ Ath =0 on T,
So

where P =const 1s chosen from the last integral YVh

Alh =Boh + div| ————o-—
condition (averaged pressure on Sy is constant); = Boh+dw 5
e=sup|Vy|/c. The case V=0 corresponds to capil- 1+ (VHo)

lary fluid sloshing of a “fluid cork” in micro-gravity.
The problem on CAE for this case is divided into (Vh,VHu1)VHp ]

two independent problems for -

(1+ (VH01)2)3/2
Y01 :<21>($:H01(ya Z)a Doy :@01($’ Y Z))

2
and +; [kzq)Olq)oLxh = (V®o1, V®o1,2)ht
202:<22>($:H02(ya l‘)),

In order to investigate the stability of Xy, and X

namely, ) (29)
—|—]€ @01@ - (V<I>01, V<I>) on 201,
EUI
H
i | Bo Hyy +diV# +
14+ (VHp)?
) (25) Wy +h W)
(K (®01)” = (V®01)* + P) = 0 (HoyWy + Ho W)
on 201, (VHQ,Vh)
. = ———-— on 0%,
Adgy + k*®g; =0 in Qo V1+(VHg )
od
6721 =0 on (S;)U o, (26) / hdydz = 0,
EUI
6@01 . V(y, Z)
on ~  k on. 5o
and AP+ E2D =0 in Qo,
VH
H (BOH02+diV WO;J)Z) = 5%
_|_
02 (27) a—n =0 on <Sl> U So,
Boh
:—(P—NSO f) on 202, 6@
[Sol I = —{ @01 woh — Po1,2h . — o1 yhy— (30)
where
JH W+ H W,
(_1) = 7|yVW| : — = cos « 1 + (VHOZ)z - [q)Ol,xyHO,y + q)Ol,szO,z]h} X
on Yo, i=1,2 ><1/,/1+(VH0)2 on g
/ d@Q) = const. (here ®q; is the solution of the problem (26);
(Q2) ®(x,y,z) describes changing of wave function

(28) in Qo1 due to perturbation of free interface

I. A. Lukovsky, A. N. Timokha

81



ISSN 1028-7507 Axycrwanmy Bicauk. 1999. Tom 2, N 3. C. 69-83

Y01 @=hy(y, z)) and from the spectral problem

—n(z)h—l—Azh =0 on Xpo,

h
A%h = Bo h — div [V—_

14 (VH02)2

h,VH H
_(V ,VHg)V 02] on o,

(1 N (VH02)2)3/2

(31)
hyWy+h.W.
HO,yWy + HO,sz

)

Hy,Vh
_ VD) s,

1+ (VHgs)’
/ hdydz = 0

202
are positive ones (nl(i)>0, i=1,2). Negative 771(1)
corresponds to unstable ¥4, and negative 771(2) cor-
responds to unstable ¥gs.

7. PLANAR CAE SHAPES AND INSTABILITY
OF “FLUID CORK”

The simplest way to show the effect of acoustic field
is to consider the system when o =#7/2, V =1. In this
case the surfaces Xg; and Zgo (both in the presence
of planar acoustic field V' =1 and sound free case) are
planar ones, i.e.,

H01(y, Z) = hy, Hoz(y, Z) = hg+ hy,

cos(k(z — h
Doy (2,y,2) = w.
Here pg=sin(khy).

The problems (29) and (31) are solved by method
of separation of spatial variables in cylindrical coordi-
nate system. The natural modes on the free surfaces
Yo1 and Xg9 are

sin
hz('M) = (Jp(aepqr) cos (pﬁ)) , J;}(aepq) = 0.

The eigenvalues are

Nyg = iy (a0, — Bo)—
1 1/(nth (nhy)), k2<ae§q,
2 1/t (nhe)), k2> a2, G2

n\2 = pp (a2, + Bo),
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where n = /|k? — a2 |. Note, that for capillary sur-

face natural modes are the same ones, but
71

1) = pp (e, — Bo);

Ty = ppor (w0, + Bo).

Capillary planar surface is stable if and only if
—a11 <Bo< ay;. However, in accordance with (32),

there exists such a wave number &, that 771(,}]) <0 for
any Bond number, even for Bo=0. This means that
the surface ¥g; can become unstable due to acoustic
loading. When analyzing the expression for 77511) n
details we find out that for any Bond number pla-
nar Xo; is not stable as k— ay;— (the frequency of
sound is close to the first natural tone of acoustic
field in gas), because 77511) tends to —oo as k— ae17.
Just such a resonance phenomenon was observed in
the experimental work [1].

Conclusion 4. The acoustic pumping of a cryo-
genic fluid in zero-gravity utilizes the hydrodynamic
instability phenomenon forced by acoustic resonance.

CONCLUSIONS

A number of analytical and numerical solutions of
averaged problems on CAE and the slow-time slosh-
ing of “fluid—gas” interface under zero-gravity con-
ditions exposed to acoustic vibrations of gas domain
confirms the good agreement of the theory with ex-
perimental data. The examples concern the case of
cylindrical vessel with low-gravity acceleration vector
along the directrix. This limitation makes available
the comparison with trivial (planar) solutions of cap-
illary problem.

We show that if the sound vibrator modulates a
non-planar acoustic field then CAE shape is not pla-
nar one even for positive Bond number. This means
that CAE shape does not coincide with capillary
shape. However, even if the acoustic vibrator pro-
duces planar acoustic field in gas and CAE shape is
also planar one, no conclusion about the stability of
this interface can be made. Acoustic loads change
drastically the dynamic properties of the sloshing in-
terface, so the analysis of new stability is necessary.
We propose a simple analytical way how to find the
range of exciting frequencies, for which the planar
equilibrium shape is unstable in contrast to the pla-
nar capillary surface. It is transparent treatment of
the destabilization phenomenon. On the other hand,
we have found out the stabilization phenomenon,
namely, we calculated the ranges of exciting frequen-
cies, for which the planar CAE shape 1s stable when
capillary planar surface is unstable. The both ranges
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are situated near a natural frequency of acoustic vi-
bration of gas domain. In addition, the acoustic loads
always lead to the drift of spectrum of the problem
on natural vibration with respect to CAE. It is ex-
pressed through the decrease of natural tones or to
their increase for selected surface modes.

We implement the same technique to analyze the
acoustic pumping phenomenon (“fluid cork” move-
ment in a tube supplied by acoustic action upon one
from interfaces). When utilizing the resonant excita-
tion we have found the range of frequencies, at which
the interface interacting with the acoustic field is un-
stable for arbitrary Bond number.
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