О «ТОЛЩИНЕ» ЛУЧЕЙ И ВОЗМОЖНОСТЯХ АКУСТИЧЕСКОГО ЛУЧЕВОГО ЗОНДИРОВАНИЯ В УСЛОВИЯХ МЕЛКОГО МОРЯ

В.К. БОГУШЕВИЧ, Л.Н. ЗАМАРЕНОВА, М.И. СКИПА

Отделение гидроакустики МГИ НАН Украины, г. Одесса, Украина

Рассматриваются ограничения применимости импульсно-лучевого зондирования в мелководных районах, вопросы рассеяния звука на неоднородностях среды и «толщины» луча. Приводятся результаты моделирования френелевских размеров и расчетов «толщины» луча для зимней гидрологии, дается оценка возможностей лучевого зондирования в районах с разными глубинами.

введение

Основные трудности реализации импульсно-лучевого зондирования в мелком море связаны с устойчивостью структуры лучевого распространения, идентификацией лучей, раздельным приемом сигналов отдельных лучей, с флуктуациями времени прихода сигналов этих лучей и с увеличением их длительностей, вызванных рассеянием звука на случайных неоднородностях среды, с «толщиной» луча, связанной с теми же процессами рассеяния звука. В задачах акустического лучевого зондирования [1, 2] вопрос физической «толщины» луча становится актуальным при выявлении и оценивании структурных неоднородностей достаточно малых размеров. Еще большую актуальность этот вопрос приобретает в случае малых глубин, когда «толщина» луча определяет саму возможность многолучевого распространения и акустического лучевого зондирования.

Вопросы устойчивости лучевой и временной структур при распространении в мелководных районах в данной работе не рассматриваются, предполагается, что выбор условий распространения звука позволяет обеспечивать эту устойчивость.

Вопросы раздельного приема сигналов отдельных лучей в задачах импульснолучевого зондирования рассматривались в работе [1]. Для наиболее благоприятных для проведения зондирования в мелководных районах условий приповерхностного звукового канала (ППЗК), в случае аппроксимации этих условий одноградиентным слоем, временной интервал \mathcal{G} между сигналами лучей с числом циклов n и n+1, в зависимости от глубины заворота z_m и градиента скорости звука g определяется [1]:

$$\mathcal{G}_{(z_m)} \approx 4(2g/c_0)^{1/2} \cdot z_m^{3/2}/3c_0, \tag{1}$$

где c_0 – значение скорости звука на поверхности.

В наиболее благоприятных для раздельного приема сигналов случаях больших градиентов, g = 0.10 1/с (в период зимнего устойчивого ППЗК характерны значения g = 0.04...0.10 1/с [3]), временной интервал \mathcal{G} будет иметь значения 2.6, 6.0 и 10.3 мс при глубинах $z_m = 40$, 70 и 100 м. Расчеты показывают, что раздельный прием сигналов с такими временными интервалами обеспечивается на расстояниях r 10, 25 и 50 км.

Флуктуации времени прихода сигнала τ и увеличение его длительности ΔT , связанные с рассеянием звука на неоднородностях среды, зависят от степени насыщенности флуктуаций распространяющегося сигнала [4]. В случае ненасыщенных флуктуаций ($\Lambda < 1$, $\Lambda \Phi^2 < 1$, или $\Lambda > 1$, $\Phi < 1$, где Λ – дифракционный параметр, Φ – параметр неоднородности среды) $\Delta T = 0$ и $\tau = \Phi/2\pi f$, где f – частота сигнала. В случае частично насыщенных флуктуаций ($\Lambda < 1$, $\Lambda \Phi^2 < 1$, или $\Lambda > 1$, $\Phi < 1$, $\Phi < 1$, где $\Lambda = 0$ и $\tau = \Phi/2\pi f$, где f – частота сигнала.

 $\tau = \Phi/2\pi f$, а $\Delta T = \Lambda \Phi \cdot \ln \Phi/2\pi f$. В случае же полностью насыщенных флуктуаций ($\Phi > 1$, $\Lambda \Phi > 1$) $\tau = \Delta T = \Lambda \Phi^2 \cdot \ln \Phi/2\pi f$. Как будет показано ниже, в рассматриваемых случаях величина параметра Φ не превышает единицы, а величина $\Lambda \Phi^2$ – нескольких единиц. При этом флуктуации времени прихода импульса τ и увеличение его длительности ΔT при принимаемых значениях частоты f будут значительно меньше временных интервалов между сигналами отдельных лучей \mathcal{G} и не будут ограничивать применимость методов акустического лучевого зондирования. Поэтому основными причинами ограничения применимости лучевого зондирования в мелководных районах будут являться «толщина» луча и раздельный прием сигналов лучей. Рассмотрение вопросов «толщины» луча в мелководных районах, определение дальностей и частот, при которых возможно лучевое зондирование в случае разных глубин моря, и является целью настоящей работы.

1 ПАРАМЕТРЫ Л И Ф И «ТОЛЩИНА» АКУСТИЧЕСКОГО ЛУЧА

Понятие «толщины» луча в лучевом приближении акустики связывают с рассеянием звуковых волн на мелкомасштабных случайных неоднородностях среды. «Толщина» луча определяется расстоянием между точками излучения и приема r, волны λ, геометрией лучевого распространения, характеристиками длиной рассеивающих неоднородностей – размер L, среднеквадратическое отклонение показателя преломления и скорости звука $\langle \mu^2 \rangle = \langle (\Delta c / c)^2 \rangle$. Согласно [4], рассеяние определяется дифракционным параметром Л и параметром неоднородности среды Ф. Параметр характеризует степень неоднородности среды получается Φ И интегрированием флуктуирующей части показателя преломления вдоль траектории, соединяющей излучатель и приемник:

$$\Phi^{2} = \left\langle \left(k \int_{0}^{r} \mu dx \right)^{2} \right\rangle \stackrel{\sim}{=} k^{2} \cdot \left\langle \mu^{2} \right\rangle L_{p} \cdot r, \quad r \gg L_{p},$$
⁽²⁾

где $k = 2\pi/\lambda$ – волновое число;

 $L_p \simeq 0.4L$ – интегральный масштаб неоднородностей;

L – интервал пространственной корреляции неоднородностей.

Параметр Λ характеризует влияние масштаба неоднородностей на дифракционные эффекты и получается усреднением вдоль лучевой траектории квадрата отношения значения френелевского размера $R_F(x)$ к размеру неоднородностей L [4]:

$$\Lambda = (1/r) \int_{0}^{r} (1/2\pi) \left[R_F(x)/L \right]^2 dx .$$
(3)

В однородной среде усреднение величины $R_F^2(x)$ по длине траектории даёт значение $\lambda r/6$. При этом значение дифракционного параметра определяется как [4]:

$$\Lambda = 0.0265 \cdot \lambda r / L^2 = 40 \cdot r / L^2 \cdot f .$$
(4)

В неоднородной среде значения $R_F(x)$ могут значительно отличаться от этих значений в однородной среде, изменяясь при циклических траекториях не только с расстоянием (с номером цикла), но и в пределах длины цикла, с глубиной, $R_F = R_F(x,z)$. С глубиной

обычно меняются и характерные размеры неоднородностей L. Поэтому для вычисления параметра Λ необходимо по длине траектории распространения усреднять величину $[R_F(x,z)/L(z)]^2$. Причём для разных лучевых траекторий, в силу различия длин их циклов и глубин заворота, расчёты Λ должны производиться отдельно.

Условия рассеяния звука при распространении и формирования физической «толщины» луча определяются параметрами Λ , Φ и степенью насыщенности флуктуаций сигнала в точке приёма. При насыщенных флуктуациях, $\Phi > 1$, $\Lambda \Phi > 1$, между точками излучения и приёма существует несколько лучей или стохастически возмущённых траекторий [4], $N \approx \Lambda \Phi$. Вертикальное разнесение возмущённых траекторий обычно соответствует значению $\xi = L_v$, где L_v – вертикальный интервал корреляции неоднородностей. При этом «толщину» (диаметр) лучевой трубки можно оценить как

$$d_{\rm v} \approx NL_{\rm v} \simeq \Lambda \Phi L_{\rm v} > L_{\rm v} \,. \tag{5}$$

При частичном насыщении флуктуаций, $\Phi > 1$, $\Lambda < 1$, $\Lambda \Phi^2 > 1$ но $\Lambda \Phi < 1$, каждый невозмущённый луч тоже расщепляется на несколько возмущённых траекторий [4]. Число этих траекторий определяется как $N \approx \Lambda \Phi^2$. Но эти лучи в пространстве полностью не разделены, а их сигналы частично коррелированны. Эти лучи отстоят друг от друга по вертикали на $\xi = L_v/\Phi$. При этом толщина лучевой трубки оценивается величиной

$$d_{\rm v} = \Lambda \Phi L_{\rm v} < L_{\rm v} \,. \tag{6}$$

При ненасыщенных флуктуациях, $\Lambda \Phi^2 < 1$, $\Lambda < 1$, между точками излучения и приёма существует только один луч [4], соответствующий малым значениям поперечных смещений траектории $\xi < L_v$. При ненасыщенных флуктуациях и существенных дифракционных явлениях, $\Phi < 1$, $\Lambda > 1$, тоже справедливо геометрооптическое приближение. При ненасыщенных флуктуациях приблизительная оценка размера лучевой трубки даётся выражением [4]:

$$d_{\rm v} \sim 2 \left(\lambda r / 2\pi\mu\right)^{1/2} \cdot \left(\lambda / 2\pi L_{\rm v}\right) = 2(\lambda r)^{1/2} \cdot \left(\lambda / 2\pi L_{\rm v}\right) \left(1 / 2\pi\mu\right)^{1/2}.$$
 (7)

Таким образом, для определения «толщины» луча необходимо вычисление параметров Λ и Φ и используемого для вычисления Λ френелевского размера $R_F(x)$.

2 ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ФРЕНЕЛЕВСКИХ РАЗМЕРОВ. ОЦЕНКА ПАРАМЕТРОВ Л, Ф И ЗНАЧЕНИЙ «ТОЛЩИНЫ» ЛУЧА

Френелевский объём ограничивает область пространства, в которой могут проходить лучевые траектории, соединяющие излучатель и приёмник, длина которых отличается не более чем на полдлины звуковой волны, $\lambda/2$. Френелевский размер луча (или френелевский радиус) представляет собой поперечный размер френелевского объёма. Общая характеристика френелевских размеров лучей $R_F(x)$ для океана в случае канонического ПЗК дана в работе [4]. Закономерности формирования зависимостей $R_F(x)$ от глубин заворота траекторий и особенностей ПЗК Черного моря рассмотрены в работе [5]. Ниже будут рассмотрены вопросы френелевских размеров в условиях ППЗК шельфа северо-западной части Черного моря.

Численное моделирование френелевских размеров $R_F(x)$ выполнено по методике,

описанной в работе [5], для трех характерных глубин Н_м и типов ППЗК моря в Черного шельфа зимний сезон, 15.02.79 гидрологический $(H_{M} = 40)$ м), 10.02.83 $(H_{\rm M} = 75 \,{\rm m}),$ 22.02.76 ($H_{_M} = 100$ м), для расстояния r = 15 км при глубине излучателя и приемника $z_u = z_{np} = 1$ м и длине волны $\lambda = 0.15$ м ($\Delta t = 50$ мкс). Выбор лучевых обусловлен траекторий ИХ максимальным приближением к дну. На рис. 1 (а, б, в) показаны профили скорости звука (ПСЗ), лучевые траектории и френелевские размеры (отклонение луча вверх и вниз отмечено знаком «×» и «♦») на первой половине трассы распространения звука для трех характерных типов ПСЗ и однородной среды (пунктирная кривая). Как видно из рисунков, зависимости $R_{E}(x)$ носят связанный с циклический характер, цикличностью лучевых траекторий; величина R_{F} определяется текущим значением угла скольжения траектории фактором фокусировки, И что соответствует закономерностям, установленным для ПЗК Черного моря [5]. Зависимость $R_F(x)$ на расстояниях, соответствующих точкам отражения от поверхности, имеет максимумы, которые увеличиваются от начала и конца трассы к ее середине. Отношение максимальных значений френелевских размеров реальной $R_{\rm F}(x)$ в однородной $R_{E}^{0}(x)$ средах составляет 0.61-0.73. А в реальной среде и ППЗК $(g = 0.08c^{-1})$, угол линейном ИЗ излучателя $\chi_{\scriptscriptstyle Rblx} = 4.7^{\circ}$, выхода глубина заворота $z_m = 62$ м, число циклов n = 5) отношение френелевских размеров $R_{F \max} / R_{F \max}^{\text{лин}}$ составляет 0.72-0.85. В нижних точках заворота лучевой траектории могут наблюдаться

локальные максимумы, например, рис. 1(б) ($H_{M} = 75$ м) и рис. 1(в) ($H_{M} = 100$ м).

Вычисленные значения $R_F(x)$ позволяют найти значения параметра Λ для рассматриваемых условий. Дифракционный параметр Λ получен методом численного интегрирования ур. (3) с учетом изменения интервала корреляции неоднородностей с глубиной, L(z). Рассмотрен случай изотропных неоднородностей, вертикальный интервал корреляции и среднее значение квадрата отклонения показателя преломления которых приняты следующими [6]: в перемешанном слое до глубины 30 м при отсутствии волнения $L_{\nu} \approx 2$ м, $\langle \mu^2 \rangle \approx 20 \cdot 10^{-10}$; с увеличением $H_{_{M}}$ размеры неоднородностей увеличиваются линейно с глубиной, достигая значений на горизонте 70 м – $L_{\nu} \approx 30$ м при $\langle \mu^2 \rangle \approx 15 \cdot 10^{-10}$, на горизонте 100 м – $L_{\nu} \approx 50$ м при $\langle \mu^2 \rangle \approx 10 \cdot 10^{-10}$. Условия рассеяния в реальной среде сравниваются с этими условиями в однородной среде ($L_{\nu} = 2$ м, $\Lambda_0 = 15$) и линейном ППЗК ($L_{\nu} = L(z)$, $\Lambda_{_{MUH}} = 3.16$). В таблице 1 приведены характеристики лучевых траекторий, относительные величины френелевских размеров, дифракционные параметры Λ и параметры неоднородности Φ .

Профили скорости Характеристики звука распространения и параметры рассеяния	15.02.79 <i>Н</i> _м = 40 м	10.02.83 <i>H</i> _м = 75 м	22.02.76 <i>Н_м</i> = 100 м
Угол выхода $\chi_{_{eblx}}$, °	3.73	3.52	5.19
Глубина заворота <i>z_m</i> , м	34	70	86
Число циклов <i>п</i>	11	4	6
Отношение $R_{F \max} / R_{F \max}^{\text{лин}}$	0.77	0.85	0.72
Отношение $R_{F \max} / R_{F \max}^0$	0.66	0.73	0.61
Дифракционный параметр Л	4.42	2.52	1.33
Параметр неоднородности Ф	0.205	0.598	0.688
$\Lambda \Phi^2$	0.186	0.902	0.630
ΛΦ	0.906	1.507	0.915
«Толщина» луча d_v , м	67.6	4.8	3.2

Табл.	1
-------	---

 $d_v \approx 7.5$ м, но практическая реализация лучевого зондирования была бы затруднена. Лучшие возможности для лучевого зондирования существуют при большей, H_и = 75 м, глубине моря. Для рассматриваемого луча и средних по траектории значений $L_{y} = 20$ м, $L_p = 8$ м и $\langle \mu^2 \rangle = 17 \cdot 10^{-10}$ параметр неоднородности составляет $\Phi^2 = 0.358$, $\Phi = 0.598$. Для характерной гидрологии (ПСЗ 10.02.83 на рис. 1(б)) $\Lambda = 2.52$, $\Lambda / \Lambda_0 = 0.168$, $\Phi < 1$, и существенной дифракции, $\Lambda > 1$. «Толщина» луча определяется ур. (7), однако при этом она зависит от глубины, $d_v \sim 1/L_v(z) \cdot (\mu(z))^{1/2}$. Если в верхнем перемешанном слое d, велико, то с увеличением глубины уменьшатся, составляя в придонном слое значение $d_v = 4.8$ м. При увеличении глубины моря до $H_M = 100$ м размер неоднородностей у дна составляет $L_v = 50$ м при $\langle \mu^2 \rangle = 10 \cdot 10^{-10}$. Для усредненных по траектории значений $L_{y} = 30$ м, $L_{p} = 12$ м, $\langle \mu^{2} \rangle = 15 \cdot 10^{-10}$ параметр неоднородности составляет $\Phi^2 = 0.474$, $\Phi = 0.688$. Для характерной гидрологии (ПСЗ 22.02.76 на рис. 1(в)) $\Lambda = 1.33$, $\Lambda / \Lambda_0 = 0.089$, $\Lambda / \Lambda_{_{_{MH}}} = 0.42$. Эти условия соответствуют случаю ненасыщенных флуктуаций, Ф < 1, и существенной дифракции, Л > 1, «толщина» луча (ур. (7)) в придонном слое $d_v = 3.2$ м.

Значения «толщины» луча в двух последних случаях обеспечивают хорошее пространственное разрешение системам зондирования в придонном пространстве и позволяют при некотором увеличении d_v увеличить расстояния до r = 22...25 км.

выводы

В зимний гидрологический сезон в мелководных (до 100 м) районах возможности лучевого зондирования в первую очередь ограничиваются фактором «толщины» луча (определяемым толщиной перемешанного слоя и характеристиками его неоднородностей). Работа систем зондирования возможна при глубине моря $H_{_M} \sim 40$ м на расстояниях ~5 км при частотах $f \sim 30$ кГц, при глубине $H_{_M} = 70...100$ м – на расстояниях 15...20 км при частотах $f \approx 7...10$ кГц.

ЛИТЕРАТУРА

- Богушевич В.К., Замаренова Л.Н., Скипа М.И. О возможностях акустического лучевого зондирования неоднородностей морской среды // Консонанс-2005. Акустичний симпозіум 27-29 вересня 2005 р. – Київ: Інститут гідромеханіки, 2005. – С. 90-96.
- Богушевич В.К., Замаренова Л.Н., Скипа М.И. Повышение эффективности экологического и ресурсного мониторинга морской среды за счёт применения метода акустического горизонтального лучевого зондирования // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. – Севастополь, 2006. – вып.14. – С. 349-357.

- 3. Богушевич В.К., Замаренова Л.Н., Скипа М.И. Дальнее распространение звука в приповерхностном звуковом канале северо-западной части Черного моря // Консонанс-2005. Акустичний симпозіум 27-29 вересня 2005 р. Київ: Інститут гідромеханіки, 2005. С. 84-91.
- 4. Распространение звука во флуктуирующем океане / Под ред. С. Флатте. М.: Мир, 1982. 462 с.
- Богушевич В.К., Замаренова Л.Н., Скипа М.И. О рассеянии звука, френелевских размерах и «толщине» лучей в задачах акустического лучевого зондирования // Актуальні аспекти фізико-механічних досліджень. Акустика і хвилі – Київ: Наукова думка, 2007. – С. 46-55.
- 6. Агеева Н.С., Андреева И.Б. и др. Океанологические характеристики, важные для акустики океана // Акустика океана. Часть І. М.: Наука, 1974. с. 5-78.