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The resonant frequencies of Pb(ZrTi)O3 disk were studied. In the framework of elastic isotopic body 
the experimental frequencies were characterized. The theoretical solution of finite disk vibrations 
constructed of the displacements in the series of trigonometric and Bessel functions of the thickness 
and the radial directions respectively. Theoretical frequencies were found with necessary accuracy. In 
the low frequency range the edge resonance was predicted with high accuracy. The specific types of 
vibrations in high frequency range were described theoretically and confirmed experimentally. 
General good agreement in resonant frequencies between the theoretical and the experimental results 
was found. 

INTRODUCTION 

This work is devoted to analysis of the frequency spectrum of the piezoceramic disk made 
from Pb(ZrTi)O3 material. The investigation is based on the theoretical model of steady 
vibrations of an isotropic finite cylinder. The solution of the problem is the result of an 
expansion of the displacements in the series of trigonometric and Bessel functions of the 
thickness and the radial coordinates respectively. The method of solution according to [1] will be 
called “method of superposition”. When the analytical solution was obtained the properties of the 
experimental pattern were found. Then the theoretical frequencies were compared with the 
experimental ones. Good agreement even for so called edge-modes [2] was found, although 
Mindlin’s second order theory predicts edge resonances but they lower than experimental ones 
by value about 14% for BaTiO3 disks [4]. Edge modes were discovered by E.A.G. Shaw [2], 
distinct the motion localized at the circular boundary of a disk and decreased rapidly toward the 
center. 

The attention is also paid to high frequency vibrations, where frequencies higher than the 
frequency minimum of the second branch in Fig.1 with its associated zero group velocity at a 
nonzero wave number and phase and group velocities of opposite signs at smaller wave numbers. 
Possibility of very accurate predicting the piezoceramic disk frequencies up to the frequency of 
thickness-shear mode was concluded. In the latter the displacements are parallel to the middle 
plane of the infinite plate. In this work Poisson’s ratio ν  grater then 1/3 and the frequency of the 
thickness-extensional mode is higher than the frequency of symmetric thickness-shear mode. The 
thickness-extensional mode existing in an infinite plate with displacements is normal to the 
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middle plain of the plate and the middle plain is the nodal plain. The frequency of this mode 
depends on Poisson’s ratio ν  . The results of proposed investigation may be summarized as 
following: it is found that in the frequency range of backward wave specific types of modes 
called B modes and A modes [5] exist for the material with Poisson’s ratio grater then 1/3. 

 
Figure 1 

 

THEORETICAL ANALYSIS 

The solution of Rayleigh’s equation for infinite elastic plate of thickness 2H presented in 
Fig.1 is necessary for further analysis. The finite number of real propagate constant Re ξ  or 
imaginary Im ξ  and infinite number of complex conjugate propagate constants ξξ ,  the spectrum 
has for the fixed normalized frequency 2/ cfH=Ω  ( f  – frequency in Hz, 2c – shear wave 
velocity, H – semi-thickness of plate). 

To consider the problem for vibrations of a finite cylinder let us put the cylindrical coordinate 
system Orθ z in the center of a cylinder. The even particle in a cylinder should satisfy axis 
symmetric Lame equations: 
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where ω  – angular frequency; 11 / cωγ = , 22 / cωγ =  – normalized frequencies; ( )kcc += 1221  – 
dilatational wave velocity; ν  – Poisson’s ratio, )21/( νν −=k ; ρ/2 Gc =  – shear wave velocity; 
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=Θ  – volume dilatation, G – shear modulus and ρ  – material density, harmonic 

factor tie ω  will be omitted here and in what follows. 
On the cylinder boundaries the stresses have to satisfy the following conditions: 

,0),( =zarσ            ,0),( =zarzτ     ,HzH ≤≤−  

(1) 

(2) 
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),(),( rgHrz =±σ     ,0),( =±Hrrzτ     .0 ar ≤≤  
Here ),(),( zaza rr σσ ≡− , means only symmetric vibrations with respect to the plane z=0. The 
stresses and the displacements are related by means of Hook’s law and Caushy relations. 

The solution of the problem (1)-(2) is taken as the series of the complete and the orthogonal 
trigonometric and Bessel functions  
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Here ,22
ini kq γ−= ,22

ijip γλ −=  when 2,1=i ; and Hnkn /π= , ( ) 01 =aJ jλ  for ,...2,1, =nj .  

The coefficients of the series (3) should be found from the infinite system of linear algebraic 
equations which are the result of fulfilling the boundary conditions (2). The important conclusion 
in analysis of the infinite system was made by V.T. Grinchenko [1], he proved that on 
frequencies which are not equal to the resonant ones the unknown coefficients have the 
following asymptotic 

,limlim 0ayx jjnn
=−=

∞→∞→
 

where consta =0 . The rule (4) let us pass from the infinite system to the finite thus to find the 
values of the resonant frequencies with necessary accuracy. 

EXPERIMENTAL WORK  

The disk from Pb(ZrTi)O3  piezoceramic material was  studied on the resonant vibrations. 
The plane surfaces of the disk were fully covered by split silver electrodes therefore the cylinder 
had the polarization along the thickness. The piezoelectric cylinder had the diameter of 70 mm, 
the thickness equal to 8 mm and the density equal to 6821 kg/m 3 . The frequencies spectrum was 
measured from 10 kHz up to 300 kHz. The resonant frequencies were measured at the maximum 
values of voltage U. It should be mentioned that only symmetric frequencies relatively to angular 
coordinate and central plane were electrically excited that means that the specimen had been 
machined precisely. 

DISCUSSION 

The information concerning the elastic constants of the disk was obtained. Although 
piezoceamic is transversely isotropic material the assumption of its isotropic doesn’t lead to 
serious discrepancies between the theoretical and the experimental results. Two elastic constants 
are needed if a disk is assumed to be isotropic. Poisson’s ratio and the shear wave velocity are 
more convenient. Poisson’s ratio for Pb(ZrTi)O3 is 0.361 and the shear wave velocity is 1807.5 
m/s. The elastic characteristics were calculated by interpolation of the theoretical and the 
experimental results as described in [6]. The frequency spectrum in Fig. 2 for normalized 
frequency Ω  versus dimensionless radius R=a/H is presented. The frequencies 1–4 are out of 
our interest and are not shown in Fig. 2. The frequencies 1–5 are essentially radially dilatational 

(4) 

(3)
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in character until Ω  approaches eΩ =1.44. It can be shown by approximately linear relationship 
between R and Ω  and by the normal surface displacements patterns which are single Bessel 
functions ( )rJ jλ0  at j=1,2,…,5. When each spectral curve approaches the region at the plateau 
corresponding eΩ  frequency Ω  becomes essentially independent from R and the displacements 

zu at the plane surface z=H are characterized with the exponential decay toward the center of a 
cylinder. The resonant frequencies 7–8 are also radial. 

 

 
Figure 2 

Other interesting resonances appear in the frequency range sΩ<Ω<Ω∗ . The frequency 
∗Ω =1.88 is the frequency minimum of the second branch 2φ  in Fig. 1 and the group velocity is 

equal to zero with nonzero propagation constant. That phenomenon produces the typical terrace 
like structure of the high frequency spectrum of disks. It begins to develop at the frequency with 
asymptotic value ∗Ω  when R ∞→ . The aforementioned resonances construct “stage-structure” in 
that frequency range, which was described in [5] for the case when ν <1/3. A classification for 
ν =0.361 can be made only on the basis of analysis of the vibration form zu  on the individual 
segments of the corresponding spectral curve (see Fig. 3). It was concluded that stage-structure is 
saved for ν >1/3 and consists from B aaa– aaa in Fig. 3 (a) and A modes aaa–   a   in Fig 3 (b). 
The number of B modes increase with increasing dimensional radius R, they develop up to the 
frequency with asymptotic value sΩ  when R ∞→ . In accordance with [5] the number of nodal 
circles in displacement zu  corresponds the order of B and A modesaaaa–aaa 2B  mode and 
aaa,aaa construct 1B  mode. The segment of spectral curves aaa is 2A  mode and aaa,aaa are 3A  
mode. 

Let us pass to comparison of the theoretical and the experimental results. The experimental 
resonant frequencies are presented as the dots with corresponding numbers 5–9 in Fig. 2. One 
could see good general agreement between considering results. The resonant frequencies 1–5 
have discrepancy of about 1 %, but frequencies 7, 8 give about 4 %. The proposed method gives 
good agreement for the experimental value of the edge resonance and discrepancy of less than 
1% at while the second order theory gives 16% [3]. At the same time improved second order 
theory by P.C.Y. Lee is good at predicting the modes of edge resonances [5]. The resonant 
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frequency 9 was found theoretically with discrepancy of about 0.8 % and it belongs to 2B  mode. 
The frequency of 1B  and 2A  modes was not found experimentally and the reasons for its not 
having been detected require further study. 
 

                    
(a) (b) 

Figure 3 

CONCLISIONS 

The experimental edge-mode was predicted theoretically with discrepancy of about 1%. 
Existence of B and A modes for ν >1/3 in a finite disk was proved. The existence of B mode was 
confirmed experimentally for Pb(ZrTi)O3 disk. When A mode was not excited in the 
experiment, the other resonant frequencies were predicted theoretically with high accuracy.  
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