АНОМАЛИЯ ВРЕМЕНИ ЛУЧА В УСЛОВИЯХ ЭФФЕКТА СДВИГА ТЕРМОКЛИНА (Часть 1)

В. К. БОГУШЕВИЧ, Н. С. НИКОНЮК, М. И. СКИПА

Отделение гидроакустики МГИ НАН Украины, г. Одесса

Рассматриваются вопросы геометрии и аномалий времени лучей в условиях вертикального сдвига велоклина для идеализированных и реалистичных профилей скорости звука Черного моря.

введение

Акустическое горизонтальное лучевое зондирование позволяет восстанавливать поля скорости звука прозвучиваемых пространств и наблюдать многие явления и процессы в океане. При таком акустическом мониторинге измеряются времена T_m распространения сигналов по лучам Γ_m , которые несут информацию о неоднородностях среды. Времена T_m распространения в аномальном поле $c = c_o + \Delta c$ сравниваются с временами T_m^o по лучам Γ_m^o в опорном поле $c_o(x, y, z)$. Аномалия поля $\Delta c(x, y, z, t)$ восстанавливается по совокупности аномалий времен $\Delta T_m = T_m - T_m^o$. Задача инверсии $\Delta T_m \rightarrow \Delta c$ сложна и обычно ее упрощают путем линеаризации. Заменяя аномальные траектории Γ_m на опорные Γ_m^o и, полагая малость их отличия и малость, связанного с этим, отличия времен $\Delta t(\Gamma_m, \Gamma_m^o)$, получают приближенное, в линеаризованном по Δc виде, выражение, $\Delta T_m \approx -\int c_o^{-2} \Delta c ds$ [1, 2]. Разница времен $\Delta t(\Gamma_m, \Gamma_m^o) << \Delta T_m$. Последнее требование выполняется не всегда, его выполнение зависит от многих условий [2]. В значительной степени величина $\Delta t(\Gamma_m, \Gamma_m^o)$ зависит от сдвига велоклина.

Существуют неоднородности среды (вихревые образования, внутритермоклинные линзы, опускание теплых или холодных вод в потоках течений) характер аномалии поля которых определяется изменением глубин слоев с высокими значениями градиента скорости звука (температуры) – вертикальным сдвигом велоклина (термоклина). В условиях Черного моря при сдвиге велоклина задача восстановления полей крайне осложняется, становится не применимой линейная инверсия, использующая зависимость Δc от ΔT_m [3], так как составляющая аномалии времени, связанная с изменением формы луча, глубины его верхней точки заворота, ΔT_{m_2} , оказывается для многих лучей больше составляющей, связанной с интегрированием аномалии поля по лучу ΔT_{m_1} .

Для решения задач инверсии в случаях сдвига велоклина было предложено использовать зависимость аномалии времени ΔT_m не от аномалии поля Δc , а от сдвига клина Δz , для случая идеализированных профилей, предложена методика их восстановления [3]. При этом возникают задачи аномалий времени луча при сдвиге клина для разнообразных схематизаций аномального и опорного профилей, влияния отличий этих профилей на аномалию времени, аномалии времени для реальных профилей и задача инверсии в этих случаях. Целью работы является определение зависимостей аномалии времени луча, связанной со сдвигом велоклина, от характеристик идеализированных и реальных профилей и оценка возможностей решения задач инверсии $\Delta T_m \rightarrow \Delta z$.

1. АНОМАЛИЯ ВРЕМЕНИ ЛУЧА ПРИ СДВИГЕ ВЕЛОКЛИНА

Численное моделирование и исследования зависимостей аномалии времени ΔT_m лучей от сдвига глубин велоклина Δz_k многих реальных профилей Черного моря показали, что эта зависимость достаточно близка к линейной. Причем изменение относительной аномалии времени $\Delta T_m / \Delta z_k$ для разных лучей связано с изменением значения угла скольжения этих лучей на оси канала. Зависимости ΔT_m от величины аномалии скорости звука Δc и вертикального градиента скорости звука в велоклине g_e оказались крайне неопределенными и незначительными. Поэтому для определения ΔT_m будем использовать ее зависимость от угла скольжения луча χ и сдвига глубин велоклина Δz_k – сдвига по глубине точек аномального профиля скорости звука.

Идея подхода заключается в том, что в качестве основного фактора, определяющего аномалию времени ΔT_m , рассматривается изменение глубины верхней точки заворота аномального луча, Δz_m^+ и соответствующее изменение длины его верхнего полуцикла, D_u^+ . Верхний полуцикл луча располагается в области глубин от оси канала до нижней границы клина, где изменения скорости звука крайне малы и участки луча хорошо аппроксимируются отрезками прямых линий, и в области глубин клина, область заворота, длина которой мала из-за больших значений градиента g. При таких соотношениях элементов луча зависимость ΔT_m от Δz оказывается в значительной степени линейной. При этом связанные с изменением глубины z_m^+ и длины D_u^+ луча изменения его формы, – глубины нижней точки заворота z_m^- и длины нижнего полуцикла D_u^- – рассматриваются, в смысле влияния на аномалию времени ΔT_m , как факторы второго порядка малости. На аномалию времени ΔT_m большое влияние может оказывать изменение формы луча после его заворота в аномальной области, изменение длины цикла D_{u} и глубин нижней и верхней точек заворота, z_{m}^{-} и z_{m}^{+} . Но значительные отличия D_{u} , z_{m}^{-} и z_m^+ возможны только при больших значениях горизонтального градиента g_z в точке заворота (переменный волновод), которые в настоящей работе не рассматриваются.

1.1. Изоскоростной слой, бесконечно удаленная точка приема. Для идеализированных велоклинов с бесконечными значениями градиентов и бесконечно удаленной точкой приема (рис. 1) аномалия времени, связанная со сдвигом клина, будет определяться разницей длин путей *ACE* и *ABD* (рис. 16) (ось глубин *z* направлена вниз)

$$\Delta s = BC - BF = (-\Delta z / \sin \chi_o)(1 - \cos 2\chi_o) = -2\Delta z \cdot \sin \chi_o.$$
(1)

Аномалия времени луча при сдвиге клина будет иметь значение:

$$\Delta T_m = T_m^a - T_m^o = \Delta s / c_{\rm HF} = -2\Delta z \cdot \sin \chi_o / c_{\rm HF} \,. \tag{2}$$

1.2. Изоскоростной слой, конечная удаленность точки приема. Если приближение бесконечной удаленности точки приема не справедливо, то прямые *BO* и *CO* не параллельны и углы выхода аномального и опорного лучей будут разными, $\chi_o \neq \chi_a$ (рис. 1в). В этом случае, учитывая обычные для геометрии лучей соотношения, BO >> BA и $BA >> \Delta z$, будем иметь $\chi_o - \chi_a \ll \chi_o$ и

$$\Delta T_m \approx -2\Delta z \cdot \sin[(\chi_o + \chi_a)/2]/c_{\rm HF} \,. \tag{3}$$

Рис. 1. Профиль с изоскоростным слоем, *a*, геометрия лучей, бесконечно удаленная точка приема, *б*, геометрия лучей, конечная удаленность точки приема, *в*

1.3. Верхний слой изоскоростной, а нижний – изоградиентный. Если слой выше оси канала изоскоростной, а ниже оси изоградиентный, то верхние полуциклы лучей будут представлять собой отрезки прямых линий, а нижние – дуги окружностей (рис. 2). В этом случае аномалия времени луча будет складываться из аномалий верхнего и нижнего полуциклов – увеличения пути и времени в верхнем полуцикле и одновременном уменьшении времени в нижнем полуцикле.

$$\Delta t = t_a - t_o = (t_a^+ + t_a^-) - (t_o^+ + t_o^-) = (t_a^+ - t_o^+) + (t_a^- - t_o^-) = \Delta t^+ + \Delta t^-,$$
(4)

где $\Delta t = \Delta T / N_u$ – аномалия времени по одному циклу луча.

1.3.1. Аномалия времени верхних полуциклов лучей. В верхних полуциклах (изоскоростной слой) аномалия времени пропорциональна разнице длин путей лучей, $\Delta t^{+} = \Delta s^{+} / c_{0}$. В частном случае $\chi_{a} = \chi_{o} = \chi$ (рис. 1б) разница длин Δs^{+} определяется

$$\Delta s^{+} = BC - BF + EG = -2\Delta z \cdot \sin \chi - 2\Delta z \cdot \cos \chi / \operatorname{tg} \chi = -2\Delta z / \sin \chi \,. \tag{5}$$

При этом разница длин полуциклов аномального и опорного лучей будет равна

$$\Delta D = DG = EG/\cos \chi = -2\Delta z/tg \chi .$$
(6)

В общем случае, $\chi_o \neq \chi_a$, разница длин $\Delta s^+ = s_a^+ - s_o^+$ будет следующей (рис. 1в)

$$\Delta s^{+} = 2(z_{_{TK}} - \Delta z) / \sin \chi_{a} - 2z_{_{TK}} / \sin \chi_{o} = -2\Delta z / \sin(\chi_{o} - \Delta \chi) + + 4z_{_{TK}} \cdot \sin(\Delta \chi/2) \cdot \cos(\chi_{o} - \Delta \chi/2) / \sin \chi_{o} \cdot \sin(\chi_{o} - \Delta \chi) ,$$
(7)

где $\Delta \chi = \chi_o - \chi_a$, $z_{\tau \kappa} = z_o - z_1$ – отстояние опорного велоклина от оси канала. При этом разница длин полуциклов аномального и опорного лучей будет равна

$$\Delta D = 2(z_{\rm tk} - \Delta z)/\mathrm{tg}\,\chi_a - 2z_{\rm tk}/\mathrm{tg}\,\chi_o = 2\Delta z/\mathrm{tg}(\chi_o - \Delta\chi) + 2z_{\rm tk}\cdot\sin\Delta\chi/\sin\chi_o\cdot\sin(\chi_o - \Delta\chi)\,.\,(8)$$

В этом случае значение разницы Δs длин лучей Γ_m^a и Γ_m^o от точки излучения A до поперечного сечения *ED* (рис. 2, более точное, чем в (3), значение) будет составлять:

$$\Delta s_{1}^{+} = ACG - ABD - EG = 2(z_{\tau \kappa} - \Delta z)\sin(\chi_{o} - \Delta \chi) - 2z_{\tau \kappa} / \sin \chi_{o} - \Delta D_{u} \cdot \cos(\chi_{o} - \Delta \chi) =$$

$$= -2\Delta z \cdot \sin(\chi_{o} - \Delta \chi) + \frac{2z_{\tau \kappa} [2\sin(\Delta \chi/2) \cdot \cos(\chi_{o} - \Delta \chi/2) - \sin\Delta \chi \cdot \cos(\chi_{o} - \Delta \chi)]}{\sin \chi_{o} \cdot \sin(\chi_{o} - \Delta \chi)}.$$
(9)

1.3.2. Разница времен распространения по нижним полуциклам лучей. Точное значение времени распространения по нижнему полуциклу (в изоградиентном слое, по

Рис. 2. Профиль с изоскоростным и изоградиентным слоями, *a*, геометрия лучей, *б*

дуге окружности) дается выражением [4]:

$$t = \frac{2}{a \cdot c_o} \int_0^{\chi_o} \frac{d\chi}{\cos\chi} = \frac{1}{ac_o} \cdot \ln \frac{1 + \sin\chi_o}{1 - \sin\chi_o}, \quad (10)$$

где $a = g/c_o$ – относительный градиент скорости звука, c_o – скорость звука на оси канала.

При этом время распространения по нижним полуциклам лучей Γ_m будет

следующим:

$$T = N_{u} \cdot t = (N_{u} / ac_{o}) \cdot \ln[(1 + \sin \chi_{r}) / (1 - \sin \chi_{r})], \qquad (11)$$

где χ_r – дискретные углы, соответствующие при длине трассы r лучам Γ_m .

Для малых χ_r , разлагая в ряды функции *ln* и *sin*, и для перехода от χ_r к N_u разлагая *arctg* в ряд по степеням (ar/2N) << 1, можно получить [4]:

$$T(r,N) \simeq (r / c_o)(1 - a^2 \cdot r^2 / 24N^2) = (r / c_o)(1 - a^2 \cdot D_u^2 / 24).$$
(12)

Чем больше длина цикла D_u^- , тем меньше время распространения по лучу. При этом величину $\Delta t = (r/c_o)(a^2 \cdot D_u^2/24)$ можно рассматривать как ускорение по лучу. Время распространения для одного нижнего полуцикла луча $t = (D_u^-/c_o)(1 - (a^2 \cdot D_u^{-2}/24))$. А разница времен по нижним полуциклам аномального и опорного лучей будет:

$$\Delta t^{-} = t_{a}^{-} - t_{o}^{-} = -\Delta D/c_{o} + (a^{2}/24c_{o})(D_{o}^{-3} - D_{a}^{-3}) = \Delta t_{1}^{-} + \Delta t_{2}^{-}.$$
 (13)

Первое слагаемое в (13), Δt_1^- , линейно зависит от ΔD , определяемого величинами Δz и $z_{\text{тк}}$ (8). При этом можно определить часть аномалии времени луча, линейно зависящую от Δz и $z_{\text{тк}}$ (7, 8):

$$\Delta t_{\Lambda} = \Delta t^{+} + \Delta t_{1}^{-} = \Delta t_{1}^{+} + \Delta t_{2}^{+} + \Delta t_{1}^{-} = \left(\Delta s_{1}^{+} + \Delta s_{2}^{+} + \Delta s_{1}^{-}\right) / c_{o} = \Delta s_{\Lambda} / c_{o} , \qquad (14)$$

$$\Delta s_{\Lambda} = -2\Delta z \cdot \text{tg}[(\chi_o - \Delta \chi)/2] - 2z_{\text{\tiny TK}} \cdot \sin(\Delta \chi/2) / \{\cos(\chi_o/2) \cdot \cos[(\chi_o - \Delta \chi)/2]\}.$$
(15)

Второе слагаемое в (13) определяется разницей «ускорений» по нижним полуциклам лучей. В принятых терминах $\Delta t = \Delta s/c_o$, величину $a^2(D_o^{-3} - D_a^{-3})/24$ можно рассматривать как аналог аномалии расстояния Δs_2^- для случая распространения в изоскоростном слое $c = c_o$. Точное значение величины Δs_2^- представляется

$$\Delta s_2^- = a^2 (D_o^{-3} - D_a^{-3}) / 24 = a^2 \cdot \Delta D (3D_a^{-2} + 3D_a^- \cdot \Delta D + \Delta D^2) / 24, \quad (16)$$

где $\Delta D = D_o - D_a$ определяется из (8), а D_a из соотношения $D_a = 2 \operatorname{tg}(\chi_o - \Delta \chi) / a$ [4].

Выражение (16) громоздко и неудобно для использования. Его можно упростить, отбрасывая третье слагаемое в скобках, ΔD^2 . Это будет приводить к относительной ошибке $\Delta D^2 / 3D_a^2$, значение которой для разных лучей составит – 0,57 $\cdot 10^{-6}$ для $D_a = 37,5$ км, $\Delta D = 49$ м, 2,9 $\cdot 10^{-6}$ для $D_a = 25,0$ км, $\Delta D = 74$ м и 24,7 $\cdot 10^{-6}$ для $D_a = 15,0$ км, $\Delta D = 129$ м. Эти значения малы и без потерь реальной точности можно принять

$$\Delta s_2^- \simeq a^2 (\Delta D \cdot D_a^2 + \Delta D^2 \cdot D_a) / 8.$$
⁽¹⁷⁾

Подставляя в (17) значение $D_a = 2 \operatorname{tg}(\chi_o - \Delta \chi) / a$, получим

$$\Delta s_2^- \simeq \Delta D \cdot \mathrm{tg}^2 (\chi_o - \Delta \chi) [1 + \Delta D \cdot a / 2 \, \mathrm{tg} (\chi_o - \Delta \chi)] / 2 \,. \tag{18}$$

Второе слагаемое в скобках является само по себе крайне малой, по сравнению с единицей, величиной, порядка $\Delta D / D_a$. Если раскрыть его, подставляя значение ΔD (8)

$$\frac{\Delta D \cdot a}{2 \operatorname{tg}(\chi_o - \Delta \chi)} = \left[\frac{-2\Delta z}{\operatorname{tg}(\chi_o - \Delta \chi)} + \frac{2 z_{\tau\kappa} \cdot \sin \Delta \chi}{\sin \chi_o \cdot \sin(\chi_o - \Delta \chi)} \right] \cdot \frac{a}{2 \operatorname{tg}(\chi_o - \Delta \chi)}$$

то окажется, что и здесь второе слагаемое в скобках значительно меньше первого (при $\chi_o \sim 1,5^\circ \Delta z / z_{\tau \kappa} >> \sin \Delta \chi / \sin \chi_o$) и им можно пренебречь. Тогда

$$\Delta s_{2}^{-} \approx \left[\frac{-\Delta z}{\operatorname{tg}(\chi_{o} - \Delta \chi)} + \frac{z_{\mathrm{TK}} \cdot \sin \Delta \chi}{\sin \chi_{o} \cdot \sin (\chi_{o} - \Delta \chi)} \right] \cdot \left(\operatorname{tg}^{2}(\chi_{o} - \Delta \chi) + a\Delta z \right).$$
(19)

При таком значении Δs_2^- общая аномалия пути будет иметь значение

$$\Delta s = \Delta s_{\Lambda} + \Delta s_{2}^{-} = -\Delta z \left[2 \operatorname{tg} \frac{\chi_{o} - \Delta \chi}{2} + \operatorname{tg}(\chi_{o} - \Delta \chi) \right] - z_{\scriptscriptstyle TK} \frac{2 \operatorname{sin}(\Delta \chi/2)}{\operatorname{cos}(\chi_{o}/2) \operatorname{cos}((\chi_{o} - \Delta \chi)/2)} + z_{\scriptscriptstyle TK} \cdot \frac{\sin \Delta \chi \cdot \operatorname{tg}^{2}(\chi_{o} - \Delta \chi)}{\sin \chi_{o} \cdot \operatorname{sin}(\chi_{o} - \Delta \chi)} + \frac{z_{\scriptscriptstyle TK} a \cdot \Delta z \cdot \sin \Delta \chi \cdot}{\sin \chi_{o} \cdot \operatorname{sin}(\chi_{o} - \Delta \chi)} + \frac{a \cdot \Delta z^{2}}{\operatorname{tg}(\chi_{o} - \Delta \chi)},$$
(20)

а общая аномалия времени, $\Delta t = t_a - t_o = \Delta s / c_o$.

1.3.3. Уравнение луча. Разница длин полуциклов ΔD определяется соотношением (8). Эту же разницу можно определить и по-другому, через значения углов

$$\Delta D = D_o^- - D_a^- = 2 \operatorname{tg} \chi_o / a - 2 \operatorname{tg}(\chi_o - \Delta \chi) / a = 2 \sin \Delta \chi / [a \cdot \cos \chi_o \cdot \cos(\chi_o - \Delta \chi)].$$
(21)

Из этих двух выражений можно определить соотношение между Δz , χ_o и $\Delta \chi$

$$-\Delta z = \frac{\sin \Delta \chi \cdot \operatorname{tg}(\chi_o - \Delta \chi)}{a \cdot \cos \chi_o \cdot \cos(\chi_o - \Delta \chi)} - \frac{z_{\scriptscriptstyle TK} \cdot \sin \Delta \chi \cdot \operatorname{tg}(\chi_o - \Delta \chi)}{\sin \chi_o \cdot \sin(\chi_o - \Delta \chi)}.$$
 (22)

Для рассматриваемых углов $\chi_o >> \Delta \chi$, $\cos \chi_o \approx 1,0$; $\sin \chi \approx \chi$ и

$$-\Delta z \approx \Delta \chi [(\chi_o - \Delta \chi)^2 - z_{\rm tk} \cdot a] / [a \cdot (\chi_o - \Delta \chi)].$$
⁽²³⁾

Для не очень малых углов, $\chi \ge 1,5^{\circ}$ и $z_{\tau\kappa} \le 15$ м, $a \approx 10^{-5}$ второе слагаемое в квадратных скобках на один-два порядка меньше первого. При этом с весьма высокой точностью

$$-\Delta z \approx \Delta \chi (\chi_o - \Delta \chi) / a \approx \Delta \chi \cdot \chi_o / a .$$
⁽²⁴⁾

Выражение (24), $\Delta z \cdot a = \Delta \chi \cdot \chi_o$, показывает интересную закономерность геометрии лучей при сдвиге велоклина, – при постоянстве сдвига Δz для лучей Γ_m уменьшение угла выхода χ_o сопровождается увеличением разницы углов $\Delta \chi = \chi_o - \chi_a$. Выражение (24) позволяет определять и характеристики аномальных лучей – по известным χ_o и $\Delta t \approx 2\Delta z \cdot \chi_o / c_o$, можно найти Δz и, зная *a*, найти $\Delta \chi$ и другие параметры луча.

1.4. Верхний слой изоскоростной, нижний – изоградиентный, конечное значение градиента в клине. Если градиент скорости звука в клине имеет конечное значение, g_2 , то верхние полуциклы лучей будут иметь области заворота B_1B_2 и C_1C_2 (рис. 3). Горизонтальную длину областей заворота, «O3», можно получить из

Рис. 3. Профиль с изоскоростным и изоградиентным слоями, геометрия лучей

соотношения $O3 = D_u = 2 \operatorname{tg} \chi / a_2$, где $a_2 = g_2 / c_o$. Наличие областей заворота увеличивает длину верхних полуциклов, что изменяет значения углов χ_a и χ_o , разницу длин полуциклов ΔD и аномалию времени ΔT .

При $\chi_o \simeq \chi_a$ $B_1B_2 \simeq C_1C_2$ и разница длин полуциклов ΔD остается неизменной, остается неизменной и разница длин путей аномального и опорного лучей в верхних полуциклах, аномалия времени верхних полуциклов

 Δt^+ . Увеличение длин верхних полуциклов приводит к уменьшению длин нижних полуциклов. Но эти изменения малы и практически не сказываются на аномалиях времени ΔT_m (19) (т.к. очень малы изменения углов – $\delta \chi \sim 0,01^\circ$ при $g_2 = 5 - 10 1/c$, $\chi = 3 - 6^\circ$, $D_u = 10 - 25$ км, O3 = 15 - 60 м).

Если приближение $\chi_o \simeq \chi_a$ не справедливо, то длины областей заворота будут различными, будет меняться разница длин полуциклов ΔD и аномалии времени ΔT_m . Без

учета областей заворота разница путей по верхним полуциклам Δs^+ определяется выражением (7). Разницу путей по областям заворота можно определять разницей горизонтальных длин этих областей (малость среднего по дуге угла скольжения луча).

$$\Delta O3 = O3_o - O3_a = 2(\operatorname{tg} \chi_o - \operatorname{tg} \chi_a) / a_2 = 2\sin \Delta \chi / (a_2 \cdot \cos \chi_o \cdot \cos \chi_a) \approx 2\Delta \chi / a_2 .$$
(25)

Тогда разница путей Δs^+ по верхним полуциклам при учете областей заворота составит:

$$\Delta s^{+} = s_{a}^{+} - s_{o}^{+} = -\frac{2\Delta z}{\sin(\chi_{o} - \Delta\chi)} + 4z_{\tau\kappa} \cdot \frac{\sin(\Delta\chi/2) \cdot \cos(\chi_{o} - \Delta\chi/2)}{\sin\chi_{o} \cdot \sin(\chi_{o} - \Delta\chi)} - 2\Delta\chi/a_{2}.$$
(26)

При этом разница длин полуциклов (8) тоже уменьшается на $2\Delta \chi / a_2$ и составит:

$$\Delta D = -2\Delta z / \operatorname{tg}(\chi_o - \Delta \chi) + 2z_{_{\mathrm{TK}}} \cdot \sin \Delta \chi / [\sin \chi_o \cdot \sin(\chi_o - \Delta \chi)] - 2\Delta \chi / a_2.$$
(27)

При учете областей заворота изменится и разница времен распространения по нижним полуциклам $\Delta t^- = \Delta t_1^- + \Delta t_2^-$. Если без учета этих областей разница определялась соотношениями (13, 8, 19), то при их учете слагаемые Δt_1^- и Δt_2^- будут иметь вид

$$\Delta t_1^- = \left[-2\Delta z / \operatorname{tg}(\chi_o - \Delta \chi) + 2z_{\mathrm{TK}} \cdot \sin \Delta \chi / \left[\sin \chi_o \cdot \sin(\chi_o - \Delta \chi) \right] - 2\Delta \chi / a_2 \right] / c_o,$$

$$\Delta t_2^- = \frac{1}{c_o} \left[\frac{-\Delta z}{\operatorname{tg}(\chi_o - \Delta \chi)} + \frac{z_{\scriptscriptstyle \mathsf{TK}} \cdot \sin \Delta \chi}{\sin \chi_o \cdot \sin(\chi_o - \Delta \chi)} - \frac{2\Delta \chi}{a_2} \right] \times \left[\operatorname{tg}^2(\chi_o - \Delta \chi) + a\Delta z \right].$$

В случае областей заворота в верхних полуциклах лучей во всех составляющих аномалии времени Δt^+ , Δt_1^- и Δt_2^- появляются слагаемые $2\Delta \chi / a_2$, причем в Δt^+ и Δt_1^- они компенсируют друг друга. При этом итоговое изменение аномалии времени будет определяться величиной $-2\Delta \chi [tg^2(\chi_o - \Delta \chi) + a\Delta z] / a_2 \cdot c_o$. Произведение $a\Delta z$ для всех реально используемых для зондирования лучей ($\chi_o \ge 1,5^\circ$) многократно меньше величины $tg^2(\chi_o - \Delta \chi)$ и с высокой точностью изменение аномалии можно принимать равным $-2\Delta \chi \cdot tg^2(\chi_o - \Delta \chi) / a^2 c_o$. Тогда выражение для аномалии времени будет:

$$\Delta t = \frac{1}{c_o} \left\{ -\Delta z \left[2 \operatorname{tg} \left(\frac{\chi_o - \Delta \chi}{2} \right) + \operatorname{tg} (\chi_o - \Delta \chi) \right] - z_{\operatorname{TK}} \cdot \frac{2 \operatorname{sin} (\Delta \chi/2)}{\cos(\chi_o/2) \cdot \cos[(\chi_o - \Delta \chi)/2]} + z_{\operatorname{TK}} \frac{\sin \Delta \chi \cdot \operatorname{tg}^2(\chi_o - \Delta \chi)}{\sin \chi_o \cdot \sin(\chi_o - \Delta \chi)} + \frac{z_{\operatorname{TK}} \cdot \sin \Delta \chi \cdot a \Delta z}{\sin \chi_o \cdot \sin(\chi_o - \Delta \chi)} + \frac{a \Delta z^2}{\operatorname{tg} (\chi_o - \Delta \chi)} - \frac{2 \Delta \chi \cdot \operatorname{tg}^2(\chi_o - \Delta \chi)}{a_2} \right\} = A + B + C + D + E + F .$$
(28)

В выражении (28) должно было бы быть еще одно слагаемое, связанное с отличием значений скорости звука в областях глубин заворота от значения c_o (рис. 3). Но разница длин областей заворота для крутых и средних лучей настолько мала ($\chi_o = 7,74^\circ, \Delta \chi = 0,023^\circ$ и $\Delta O3 = 0,16$ м), а для пологих ($\chi_o = 2,12^\circ, \Delta \chi = 0,086^\circ, \Delta O3 = 0,60$ м) настолько малы изменения скорости звука в этих областях, что эта аномалия времени будет мала (<7 мкс при r = 150 км) и может не учитываться.

Последнее в (28) слагаемое *F*, связанное с областями заворота лучей B_1B_2 и C_1C_2 , по сравнению с первым, основным слагаемым *A*, будет мало для всех реальных значений градиента в клине g_2 и всех, как больших, так и малых, углов χ_o . При этом оказывается, что области заворота и конечность значений градиента в велоклине будут мало сказываться на величине аномалий времени ΔT_m . Два слагаемых *D* и *E* в (28) зависят от градиента *a* ниже оси канала. При типовых значениях градиента $a \approx 10^{-5}$ 1/м и не очень малых значениях углов, $\chi_o \ge 1,5^\circ$, они на два – три порядка меньше первого слагаемого *A*. Второе и третье слагаемые, *B* и *C*, зависящие от $z_{\tau\kappa}$, весьма близки и входят в (28) с противоположными знаками. Поэтому с определенной точностью Δt можно оценивать слагаемым *A*. Несколько худшую точность будет иметь более упрощенная формула

$$\Delta t \approx -2\Delta z \operatorname{tg}(\chi_o - \Delta \chi) / c_o.$$
⁽²⁹⁾

Практическая проверка точности формулы (28) с помощью программы расчета звуковых полей в лучевом приближении «RAY» (точность для разных лучей 0,8 – 2,2 мкс при r = 150 км) показала, что ошибка вычислений аномалии времени $\delta\Delta T_m$ составляла 86, 55, 38, 21 и 13 мкс (r = 150 км) для лучей с числом циклов 4, 5, 6, 8 и 10. Многие принятые при выводе расчетных формул упрощения и округления давали ошибку не более 1,5 – 2,0 мкс и не могли объяснить полученный результат. Анализ вопроса показал,

что основная составляющая ошибки вычислений ΔT_m по формуле (28) определяется заменой при вычислениях времен по нижним полуциклам точного выражения (11) приближенным (12). Эта разница результатов расчетов и определяет >80% ошибки ΔT_m .

Рассмотрение других упрощенных и удобных к применению формул показало, что хорошую точность расчетов, лучшую чем (29), обеспечивает формула (3) $\Delta t = -2\Delta z \sin(\chi_o - \Delta \chi / 2) / c_o$, которая является точной для случая изоскоростного слоя.

Продолжение результатов исследований будет дано во второй части материалов «Аномалия времени луча и восстановление профилей в условиях сдвига велоклина».

ЛИТЕРАТУРА

- 1. *Munk W. and Wunsch C.* Ocean acoustic tomography: A scheme for large scale monitoring // Deep-Sea Res. 1979. 26. P. 123 161.
- 2. Гончаров В. В., Зайцев В. Ю., Куртепов В. М., Нечаев А. Г., Хилько А. И. Акустическая томография океана Н. Новгород: ИПФ РАН, 1997. 254 с.
- Богушевич В. К., Никонюк Н. С., Скипа М. И. Восстановление полей неоднородностей морской среды при акустическом лучевом зондировании в условиях эффекта сдвига термоклина // Системы контроля окружающей среды: Сб. науч. тр. – Севастополь: МГИ НАН Украины – 2012. – Вып. 18. – С. 15–24.
- 4. *Андреева И. Б.* Физические основы распространения звука в океане. Л.: Гидрометеоиздат, 1975. 190 с.