ШУМ БЛИЗКОГО ВЗАИМОДЕЙСТВИЯ ВИХРЯ – ЛОПАСТИ ВЕРТОЛЁТА

П. В. ЛУКЬЯНОВ

Институт гидромеханики НАН Украины, Киев

введение

Первые шаги в моделировании шума взаимодействия лопасти и вихря предприняты в середине 70-х, начале 80-х годов прошлого столетия. Модели эти были достаточно простыми. Интенсивные исследования по изучение шума взаимодействия лопасти и вихря начались с середины 80-х годов прошлого столетия. И до сих пор это направление остаётся актуальным в виду многообразия задач и, соответственно, математических моделей их решения.

Как правило, выбор математической модели основан на двух факторах. Первый из них включает в себя уровень представления физических процессов, происходящих во время генерации BVI-шума. Второй, не маловажный фактор, заключается в умении решать поставленные математические задачи. Поэтому очень часто приходится манипулировать между физическими и математическими аспектами задачи с тем, чтобы математическая постановка задачи была, с одной стороны, не чрезмерно сложной, но в то же время, с другой стороны, позволяла учесть важные физические процессы.

Одной из первых моделей генерации BVI-шума, является модель взаимодействия потенциального течения вокруг лопасти и точечного (потенциального) вихря Рэнкина [1–3]. В работе [1] основное внимание уделяется ближнему и среднему звуковому полям. Изучен характер поведения звуковой волны, генерируемой в результате взаимодействия лопасти и вихря. В работе [2] исследуется механизм шума от трансзвукового взаимодействия лопасти и вихря. При этом рассматриваются лопасти различных форм, изучается зависимость от времени коэффициента давления для различных углов наблюдения по отношению к передней кромке лопасти и точечному вихрю. В работе [3] предлагается некоторая модификация представления дальнего поля на основе формулы Кирхгофа, при этом основное уравнение для описания ближнего поля осталось тем же – в потенциальном приближении. Однако в перечисленных работах вихревая часть в модели течения отсутствует, за исключением лишь одной точки – центра точечного вихря. Предполагается также, что ударные волны настолько слабы, что не способны генерировать ощутимую завихренность в течении. Но такие ограничения справедливы лишь при больших числах Маха (М) в трансзвуковом диапазоне течения в парящем полёте ("in hover"). В то же время любые манёвры вертолёта уже выходят за рамки данных ограничений модели.

Для того чтобы учесть наличие завихренности в течении, а также взаимодействие течения с уединённым (не точечным) вихрём, необходимо добавить в модель течения вихревую составляющую. Для большинства задач винтовой аэроакустики вязкими эффектами течения можно пренебречь [4], поскольку они проявляются только в пограничном слое, который в данном классе задач очень тонкий, поэтому не принимается в рассмотрение. Таким образом, для изучения BVI-шума вполне адекватной является модель идеальной сжимаемой среды с учётом завихренности. На её основе построен ряд

подходов, позволяющих решать задачи генерации шума аэродинамического происхождения.

В данной работе представлено решение задачи генерации BVI-шума при близком взаимодействии лопасти ротора вертолёта и вихрей Тэйлора.

ПОСТАНОВКА ЗАДАЧИ

а) аэродинамическая постановка

Рис.1 Взаимодействие набегающего потока, вихрей Тэйлора с лопастью

u

Рассмотрим лопасть ротора вертолёта (рис.1), на которую в начальный момент времени t = 0 набегает однородный поток: скорость в потоке $u = U_{\infty}$, плотность $\rho = \rho_{\infty}$. В непосредственной близости от лопасти на расстоянии y_c находятся распределённые вдоль лопасти вихри Тэйлора с циркуляцией Γ . Обычно такая ситуация наблюдается после прохождения предыдущей лопастью через поток, генерирующий вихревую трубку на задней кромке лопасти. На торцах лопасти для упрощения задачи зададим условие ланное ограничение, залача и так является

проскальзывания потока. Не смотря на данное ограничение, задача и так является достаточно сложной.

В качестве характерных масштабов возьмём $U_{\infty}, \rho_{\infty}$ - параметры начального невозмущённого течения. Введём безразмерные переменные:

$$= u / U_{\infty}, v' = v / U_{\infty}, w' = w / U_{\infty}, p = p' \rho_{\infty} U_{\infty}^{2}, \rho = \rho_{\infty} \rho',$$

$$\xi = x / c, \eta = y\lambda, \zeta = z / R, \tau = kt.$$
(1)

В терминах безразмерных переменных в рамках модели идеальной сжимаемой среды, без учёта тепловых потерь, течение вокруг лопасти описывается системой уравнений движения Эйлера, неразрывности:

$$\frac{\partial u'}{\partial \tau} + u' \frac{\partial u'}{\partial \xi} + \lambda c v' \frac{\partial u'}{\partial \eta} + \frac{c}{AR} w' \frac{\partial u'}{\partial \zeta} = -\frac{1}{M^2 \rho'} \frac{\partial \rho'}{\partial \xi}$$
(2)

$$\frac{\partial v'}{\partial \tau} + u' \frac{\partial v'}{\partial \xi} + \lambda c v' \frac{\partial v'}{\partial \eta} + \frac{1}{AR} w' \frac{\partial u'}{\partial \zeta} = -\frac{\lambda c}{M^2 \rho'} \frac{\partial \rho'}{\partial \eta}$$
(3)

$$\frac{\partial w'}{\partial \tau} + u' \frac{\partial w'}{\partial \xi} + \lambda c v' \frac{\partial w'}{\partial \eta} + \frac{1}{AR} w' \frac{\partial w'}{\partial \zeta} = -\frac{1}{M^2 A R \rho'} \frac{\partial \rho'}{\partial \zeta}, \qquad (4)$$

$$\frac{\partial \rho'}{\partial \tau} + \frac{\partial (\rho' u')}{\partial \xi} + \lambda c \frac{\partial (\rho' v')}{\partial \eta} + \frac{1}{AR} \frac{\partial (\rho' w')}{\partial \zeta} = 0, \qquad (5)$$

где AR = R / c ("aspect ratio") - соотношение размеров размаха лопасти и длины хорды поперечного сечения. В системе (2)-(5) уравнение состояния уже учтено при выражении давления как функции плотности. На поверхности лопасти задаётся условие непроницаемости потока через границу: $\partial \overline{v} / \partial n = 0$.

б) акустическая постановка

Решение системы уравнений (2)-(4),(5) позволит получить характеристики основного течения, то есть аэродинамические переменные. Для изучения звуковых волн, генерируемых нестационарным потоком, необходима акустическая постановка задачи. Для этого используем, полученную ранее в работе [5], систему уравнений, но записанную в безразмерной форме:

$$\frac{\partial^{2}\bar{\rho}'}{\partial\tau^{2}} - \frac{1}{M_{\infty}^{2}} \cdot \frac{\partial^{2}\bar{\rho}'}{\partial\xi^{2}} - a^{2} (\lambda^{2}c^{2} \cdot \frac{\partial^{2}\bar{\rho}'}{\partial\eta^{2}} + \frac{1}{AR^{2}} \cdot \frac{\partial^{2}\bar{\rho}'}{\partial\zeta^{2}}) + R(\bar{\rho}', \frac{\partial\bar{\rho}'}{\partial\xi}, \frac{\partial\bar{\rho}'}{\partial\eta}, \frac{\partial\bar{\rho}'}{\partial\zeta}, \frac{\partial^{2}\bar{\rho}'}{\partial\xi^{2}}, \frac{\partial^{2}\bar{\rho}'}{\partial\eta\partial\xi}, \dots, \frac{\partial^{2}\bar{\rho}'}{\partial\zeta^{2}}) = \\ = \gamma (\frac{\partial\bar{\varphi}}{\partial\xi}, \frac{\partial\bar{\varphi}}{\partial\eta}, \frac{\partial\bar{\varphi}}{\partial\zeta}, \frac{\partial\bar{\varphi}}{\partial\xi^{2}}, \frac{\partial^{2}\bar{\varphi}}{\partial\eta\partial\xi}, \dots, \frac{\partial^{3}\bar{\varphi}}{\partial\zeta^{3}}), \tag{6}$$

$$\overline{\rho}\left(\frac{\partial^{2}\overline{\varphi}}{\partial\xi^{2}}+c^{2}\lambda^{2}\frac{\partial^{2}\overline{\varphi}}{\partial\eta^{2}}+\frac{1}{AR^{2}}\frac{\partial^{2}\overline{\varphi}}{\partial\zeta^{2}}\right)+c\frac{\partial\overline{\rho}}{\partial\xi}\cdot\frac{\partial\overline{\varphi}}{\partial\xi}+c^{2}\lambda^{2}\frac{\partial\overline{\rho}}{\partial\eta}\cdot\frac{\partial\overline{\varphi}}{\partial\eta}+\frac{1}{AR^{2}}\frac{\partial\overline{\rho}}{\partial\zeta}\cdot\frac{\partial\overline{\varphi}}{\partial\zeta}=-\left[c\frac{\partial\overline{\rho}}{\partial\tau}+\overline{\rho}'\left(c\frac{\partial\overline{u}}{\partial\xi}+\lambda c^{2}\frac{\partial\overline{v}}{\partial\eta}+\frac{c^{2}}{R}\frac{\partial\overline{w}}{\partial\zeta}\right)+c\overline{u}\frac{\partial\overline{\rho}'}{\partial\xi}+\lambda c^{2}\overline{v}\frac{\partial\overline{\rho}'}{\partial\eta}+\frac{c^{2}}{R}\overline{w}\frac{\partial\overline{\rho}'}{\partial\zeta}\right].$$

$$(7)$$

Здесь $\overline{\varphi}, \overline{\rho}'$ - здесь уже не векторные величины, а безразмерные звуковой потенциал и плотность; $R(\overline{\rho}', \frac{\partial \overline{\rho}'}{\partial \xi}, \frac{\partial \overline{\rho}'}{\partial \eta}, \frac{\partial \overline{\rho}'}{\partial \zeta}, \frac{\partial^2 \overline{\rho}'}{\partial \xi^2}, \frac{\partial^2 \overline{\rho}'}{\partial \eta \partial \xi}, \dots, \frac{\partial^2 \overline{\rho}'}{\partial \zeta^2})$ включает в себя все слагаемые, зависящие от плотности и её производных. В правой же части уравнения (6) оставим лишь те слагаемые, которые зависят от производных безразмерного звукового потенциала: $\gamma = \gamma (\frac{\partial \overline{\varphi}}{\partial \xi}, \frac{\partial \overline{\varphi}}{\partial \eta}, \frac{\partial \overline{\varphi}}{\partial \zeta}, \frac{\partial^2 \overline{\varphi}}{\partial \xi^2}, \frac{\partial^2 \overline{\varphi}}{\partial \eta \partial \xi}, \dots, \frac{\partial^3 \overline{\varphi}}{\partial \zeta^3})$.

Граничное условие на поверхности лопасти для звукового потенциала, в отличие от задач активного излучения, отдельно не ставится, поскольку звук здесь является частью общего потока, который его же и генерирует. Для полного потока оно уже сформулировано выше как условие непроницаемости. Действительно, в задачах в потенциальном приближении [6] граничное условие лишь для звукового потенциала образовалось из условия (11) только потому, что основное течение предполагалось постоянным, то есть производные от него обращались в ноль. А малые возмущения этого течения и составляли искомый звуковой потенциал, производные которого в результате и образовали граничное условие в терминах звукового потенциала. В изложенной аэродинамической постановке задачи основное течение переменно, поэтому в граничном присутствуют компоненты переменной скорости основного течения, vсловии включающие в себя (генерирующие) также и звуковые составляющие. И, таким образом, граничное условие для звукового потенциала выполняется автоматически при решении аэродинамической части задачи. И во время расчёта акустической части задачи в каждой точке вдоль расчётной сетки оно уже реализовано в виде множителей перед акустическими переменными - скорости и плотности основного потока, найденных с учётом выполнения условия непроницаемости на границе. А вот на внешней границе, на большом удалении от лопасти, акустическое граничное условие выполняется в виде условие излучения на бесконечности при выводе представления дальнего поля.

МЕТОД РЕШЕНИЯ ЗАДАЧИ

Как видно по постановке задача состоит из двух частей. Сначала необходимо решить задачу аэродинамики, то есть найти параметры основного потока. После этого уже решается задача акустики в ближнем поле. Для решения обеих частей общей задачи применялся численно-аналитический подход [7,8]. Его реализация в данной задаче в итоге даёт систему из 15 уравнений, как для аэродинамической части задачи, так и для акустической части. Количество узлов в расчётной сетке варьировалось от 50 до 80 по безразмерным координатам в зависимости от расчётной ситуации. Этого оказалось вполне достаточно для получения устойчивого счёта.

ДАННЫЕ РАСЧЁТА БЛИЖНЕГО ПОЛЯ

В качестве основной расчётной характеристики ближнего поля принят коэффициент давления:

$$C_p = 2 \cdot \frac{p - p_{\infty}}{\rho_{\infty} U^2}.$$
(8)

На рис.2 представлены данные расчёта коэффициента давления C_p (ближнее поле) для различных расстояний \overline{r} между вихрями Тейлора и лопастью. Характер поведения пиков C_p говорит о чётко выраженном нестационарном процессе. При этом наибольшим из пиков является первый максимум, где перепад давления наблюдается от 15% (рис.26) до 50% (рис.2а), в зависимости от расстояния между вихрём и лопастью, по сравнению с давлением набегающего стационарного потока. Наибольшая вариация C_p наблюдается для $\overline{r} = 1.0(M = 0.2)$ - до 50%. С увеличением расстояния между ядром вихря и лопастью изменение коэффициента давления снижается и составляет порядка 15% при $\overline{r} = 5.0(M = 0.2)$.

Рис.2.Коэффициент давления

Нестационарные изменения течения участвуют в генерации шума аэродинамического происхождения. Из этого следует, что наиболее интенсивная генерация BVI-шума происходит при $\overline{r} = 1.0$, где наблюдается максимум распределения скорости в вихре. С увеличением расстояния между вихрём и лопастью их взаимодействие существенно

ослабевает, поскольку вихрь Тэйлора компактен и практически вся его энергия сосредоточена на расстоянии $0 \le \overline{r} \le 4.0$. Заметим также, что форма поверхности C_p близка к расчётам, полученным в работе [9]. Такое сходство говорит о приемлемости двух различных подходов описания генерации шума. Варьирование числа Маха M = 0.4 на коэффициенте C_p практически не сказывается.

Численный расчёт был выполнен также и в отсутствие вихрей Тэйлора, т.е. в учёт принимались лишь вихри, генерируемые непосредственно в самом течении. Полученные расчётные данные C_p очень близки к расчётным данным удалённого расположения вихря $\bar{r} = 5.0$.

ДАЛЬНЕЕ ПОЛЕ

После расчёта характеристик ближнего поля, остаётся узнать характер поведения генерируемой звуковой волны в дальнем поле. Для этого воспользуемся известным [4,6] подходом Кирхгофа. Согласно этому подходу выражение для звукового φ' потенциала имеет вид:

$$-M_{1}^{2} \int_{S} \left[\frac{F}{R}\right]_{t} dS_{x} + \int_{S} \left[\frac{1}{R} \cdot \frac{\partial \varphi}{\partial n} + \frac{1}{Ra_{\infty}} \frac{\partial R}{\partial n} \frac{\partial \varphi}{\partial t} - \varphi \frac{\partial (1/R)}{\partial n}\right]_{t} dS = 4\pi\varphi(x, t_{1}), \qquad (9)$$

$$F = \rho \left[(\nabla \varphi \cdot \nabla)\overline{\nu} + (\overline{\nu} \cdot \nabla) \cdot \nabla \varphi + \rho'(\overline{\nu} \cdot \nabla)\overline{\nu} + \overline{\nu} \cdot di\nu(\rho \nabla \varphi \rho' \overline{\nu}) + \nabla \varphi di\nu(\rho \overline{\nu})\right].$$

На рис.3а, $\overline{r} = 1.0$, обращает на себя внимание резкое снижение уровня давления (по отношению к $2 \cdot 10^{-5}$) в области, расположенной на расстоянии, не превышающем 10% от конца лопасти. При увеличении расстояния между вихрём и лопастью, рис.36, $\overline{r} = 5.0$, этот перепад сглаживается. Причина такого поведения заключается, скорее всего, вот в чём. При сравнительно небольших числах Маха (M = 0.2) на конце лопасти индуцируется значительное вторичное течение вдоль лопасти ротора. И здесь возникает зона с резким снижением уровня генерируемого шума. А это говорит о том, что на конце лопасти в принципе существует возможность снижения генерируемого шума. И это уже экспериментально подтверждённый факт. А в данной работе он лишь нашёл своё численное подтверждение.

Рис.3 Уровень давления в звуковой волне при M=0.2

Таким образом, рассмотренная выше математическая модель вполне подходит для изучаемого физического процесса генерации BVI-шума. В потенциальной же постановке задачи, которую автор использовал ранее [6,10], резких перепадов уровня давления в указанной зоне не наблюдалось, поскольку не учитывалась вихревая составляющая течения. Хотя на конце лопасти некоторое снижение уровня звукового давления всё же наблюдалось: максимальный уровень был на расстоянии 0.7-0.8R. При увеличении числа Маха (M = 0.4) вторичное течение не успевает столь серьёзно реализоваться, так как основное течение существенно преобладает над ним. Здесь уже никаких резких перепадов уровня давления не наблюдается, а максимальный уровень в целом выше, поскольку скорость набегающего потока (число Маха) больше.

Что же касается распределения в генерируемом частотном спектре, рис.4а,б, то следует заметить, что в случае заметного взаимодействия вихря, течения и лопасти, то есть при сравнительно близком расположении вихря и лопасти и сравнительно малых числах Маха (M=0.2, рис.4а), огибающая в спектре изломанная. Кроме того, заметны отдельные локальные всплески в районе 700Гц, хотя они не превышают 10Дб. С ростом скорости набегающего потока (M=0.4, рис.4б) и расстоянием между лопастью и вихрями вторичные всплески исчезают, а огибающая спектра становится плавной. Кроме того, общая картина генерируемого спектра (рис.4а) очень близка к экспериментальным данным шума основного винта [11].

Рис.4 Частотный спектр генерируемого шума, М=0.2, М=0.4

ЛИТЕРАТУРА

- 1. George A.R. and Lyrintzis A.S. Acoustics of Transonic Blade-Vortex Interactions. AIAA Journal.1988.v.26,N 7.p.769-776.
- 2. *Lyrintzis A.S. and Xue Y.* Study of the Noise Mechanisms of Transonic Blade-Vortex Interactions. AIAA Journal.1991.v.29,N10.p1562-1572.
- 3. Y.Xue and A.S. *Lyrintzis*. Rotating Kirchoff Method for Three-Dimensional Transonic Blade-Vortex Interaction Hover Noise. AIAA Journal.1994,vol.32.No.7,p.1350-1359.
- 4. Блохинцев Д.И.Акустика неоднородной движущейся среды. М.Наука. 1981.206с.
- 5. Лукьянов П.В. Система уравнений аэроакустики для среды с завихренностью: общий случай. // Акустичний симпозіум Консонанс-2007. 25-27 вересня 2007р.с.163-168.

- 6. *Лукьянов* П.В. Нестационарное распространение малых возмущений от тонкого крыла: ближнее и дальнее поле // Акустичний вісник,--2009--3(12)3--С.41-55.
- 7. Лукьянов П.В. Применение числено-аналитического метода для решения задач акустики. // Акустичний симпозіум Консонанс-2005. 27-29 вересня 2005р., с. 225-230.
- 8. Лукьянов П.В. Об одном численно-аналитическом подходе к решению задачи генерации звука тонким крылом. Часть І. Общая схема применения для плоской стационарной задачи.// Акустичний вісник,--2011--3(14)--С.46-52.
- 9. *Alasdair Thom and Karthikeyan Duraisamy*. High-Resolution Simulation of Parallel Blade-Vortex Interacyions. AIAA Journal.2010,v.48,No10,p.2313-2324.
- 10. *Лук'янов Петро В*. Генерація звуку при дозвуковому обтіканні лопаті гвинта гелікоптера // Вісті КПІ,--2011—4—С.143-148.
- 11. *Cox C.R. and R.A.Lynn*. A study of the Origin and Means of Reducing Helicopter Noise. Bell Helicopter Company TCREC Tech.Rep.62-73.U.S. Army Transportation Research Command, Fort Eustis, Virginia, November 1962.