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The purpose of our work is study an oscillating system and an electro-dynamical transducer, which are 
driven either by the amplifier or wave field. In the first case an amplifier is considered as a self-exciting 
system with a limited power. Electrical current produced by it is converted by the transducer into 
mechanical force, which leads to vibrations of the base. A mechanical oscillator is mounted on the 
transducer base. The influence of oscillator vibrations on the formation of the driving force leads to a 
number of specific effects, in particular, to the Sommerfeld –Kononenko’s effect. New nonlinear effects 
in the coupled shaker–oscillator system are studied in details. Steady-state regimes of the constructed 
model are investigated by methods of the theory of dynamical systems. Regular periodic and chaotic 
regimes are found and studied. Expressions for supplied and consumed powers are shown and 
investigated for regular and chaotic regimes. The inverse problem model is also discussed. The classical 
results for wave power absorption by wave energy extractor as a single degree of freedom system are 
presented in the second considered problem. The example includes an axisymmetric buoy which 
oscillates and is subjected to its natural hydrostatic restoring force. Main attention is focuses on the 
values and expressions for the mean powers. The expression for the maximum mean power is given for 
the considering system. 

 
INTRODUCTION 
 
The coupling effect between an excitation machine and vibrational loads was found by 

Sommerfeld [1–3], is a universal phenomenon and a manifestation of the law of conservation of 
energy. A rather complete study of the Sommerfeld effect has been given in the works of 
Kononenko [4], so that we call these phenomena as Sommerfeld-Kononenko’s effect [5-7]. As 
shown by Kononenko for a linear oscillator with limited excitation the characteristics of a 
nonlinear oscillator arise, such as the occurrence of instability regions. In view of this, in the 
present study, the existence of new possible characteristics is investigated for an oscillator with 
damping and an electro-dynamic shaker. Presence of both direct and feedback interactions 
between the oscillator and the shaker are main goal of our modelling and study in present paper. 
The mutual influence between an oscillating system and the mechanism of its excitation, when 
the later has limited power, gives rise to a number of unusual phenomena in their behaviour [8-
11]. The effects of the interaction of an electro-dynamic shaker powered by a vacuum-tube 
amplifier of limited power, and a linear oscillator which affects the amplitude and frequency of 
the driving force, are studied in this paper. 

 
1. THE MATHEMATICAL MODEL WITH STRONG INTERACTION 
 
Let us consider an oscillator with damping, mounted on the base of a shaker which 

undergoes displacements ( )w t  (Fig. 1). The equation of vibrations of the oscillator of mass m 
with the vibrational resistance coefficient 0β  has the following form 

mx x cx mwβ+ + = −&& & && . (1)
The base of the shaker has a displacement ( )w t  as a result of the action of the force 0 0H i  

[6, 7] applied to the coil 1 ,L  which is rigidly attached to the base. The quantity 0H  is a constant 
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characterizing the electromagnetic field of the vibrator; 0i  is the current of the shaker circuit. 
The law of motion of the centre of mass of the coil with the base (their mass is 1m ) and the 
oscillating system may be written in the form 

1 0 0( )m w m w x H i+ + =&& && && . (2)
The current of the shaker is related to the amplifier current 2 3( )i i+  and the displacement 

( )w t  by the differential relationship [5, 7] 

0 2 3
0 1 0

( )( ) 0di d i i dwL L M H
dt dt dt

+
+ − + =   (3)

Suppose that the tube operates under conditions when the anodic current equals [5] 
3

0 1 3( ) ( )a g a g ai a a e De a e Deε= + + − + , (4)
where ge  is the tube grid voltage; ae is the anodic voltage; D  is the penetration factor of the 
tube; and ε  is a small positive parameter. Applying the method of contour currents, we can 
write the following Kirchhoff’s equations for each branch of the generator current: 

1 2 3 ,ai i i i= + +    1 ,a a ae E R i= −    2
2 ,a k k

di
e L R i

dt
= − −   

2
2 3

1 ,k k
k

di
L R i i dt

dt C
+ = ∫    

2 .c c k
di

e E M
dt

= − +  

 

 
 
Fig. 1. Scheme of a shaker with an amplifier interacting with an oscillator 
 
After setting up these Kirchhoff's equation for each branch of the amplifier current, let us 

reduce them to one equation with respect to a new variable  
( )u t  ( )dt g ge E= −∫  

( gE− is the constant component of the voltage ge ). We retain only terms of the first order of 
smallness. Here we assume that 

( )( )2
0 1 1 2 0 3L  M / L   L   ,  D  ,  H  εα εα εα⎡ ⎤− + = = =⎣ ⎦ . 

Selecting the slope of the tube characteristic in (4), 1a  in accordance with the equation of 
amplitude balance, we assume it to be equal to 
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( )1      0 .
( )
c a a c

a c c

R R C L
a a a

R M DL
ε ε

+
= + >

−  

With this value of 1a  we obtain the following nonlinear equation for the function ( )u t :  
2

2
02

a c c c

c c a c c c c

E M M Md u duu a a
L C R L C L C dtdt

ω ε
⎛ ⎞

+ = − + +⎜ ⎟
⎝ ⎠  

32

1 32
c c c

g
a c a c c c c

R R du M dua u a E x
R L R L C dt L C dt
ωε ε εγ

⎛ ⎞ ⎛ ⎞+ + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

& . 

(5)

Here 
2 a c

c c a

R R
L C R

ω
+

= ;     3
0 1 1( )( )

c

c c a

MM m
L C R L L m m

εγ εα=
+ + . 

The tube obtains energy from the energy sources aE  and gE− , which are rectifiers of the 
supply voltage. We assume the rectifiers to be non-ideal sources of energy [4], since the output 
voltage E  of the rectifier depends on the current i  flowing through the load (of the tube 
oscillator, in this case), according to the external characteristic |5], which is given approximately 
by ocE  E  riε= −  ( ocE   is the open-circuit voltage; rε  is a quantity equivalent to the rectifier 
resistance). Neglecting the grid current, we assume g ocE   E .=  By considering the equality of 
rectifier output voltage on a shunt of high capacitance aC  (assuming aC 1 / ε≈ ), we obtain the 
following relationship for the voltage Ea : 

1 2( )e
a oc

e

R duE E r u t r
R r dt

ε ε
ε

= − −
+  (6)

where eR  is the equivalent resistance (the sum of aR , the tube resistance, and rε ); 1rε  and 2rε  
are constants determined by the parameters of the tube oscillator and rectifier. 

Therefore, Ea  is not a constant but depends on the variable function ( )u t .  This fact 

clearly must be reflected in the formulation of ( )u t .  After substituting (6) into (5), the 

components ( ) ( )a c c l 2M / R L C [ r u  r du / dt ]c ε ε+  reflecting the non-ideal character of the energy 
source of the excitation mechanism, appear on the right side. Terms on the right side of equation 
(5) may be regarded as ‘internal forces’ and as the effect of interaction with the oscillator. 
Therefore, we write 

2
2
02 , ,d u du du dxu L u K u

dt dt dt dt
ε ε εγ⎛ ⎞ ⎛ ⎞+ Ω = − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠  (7)

Here ( )u,  du / dtLε  is the sum of the internal forces causing energy influx; ( )u,  du / dtKε  is 
the sum of the internal resistance forces; 0Ω  is the frequency of the self-oscillation conditions of 
the unloaded excitation mechanism; i.e., 0Ω  and amplitude 0ξ  are determined for the function 

0 0cosu tξ= Ω  from the serf-oscillation equation 
2

2
02 , , 0d u du duu L u K u

dt dt dt
ε ε⎛ ⎞ ⎛ ⎞+ Ω = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠  
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We call the function ( )u,  du / dtLε  the static characteristic of the energy source, since 

under stationary conditions ( )u,  du / dtLε  opposes the energy loss ( )u,  du / dtKε . These 
functions have the following form: 

2
1 2

2
3

( , ) [( ) ]

3 ( ) ;

c c

a c c a c c

c
g

c c

du r M R duL u a
dt R L C R L C dt
M dua E

L C dt

ε ε α
⎧ ⎫

= + +⎨ ⎬
⎩ ⎭

+
 

2 3
3(u, ) 3 ( ) ;c

g
c c

du M du duK a E
dt L C dt dt

ε ε ⎧ ⎫= +⎨ ⎬
⎩ ⎭  

 

(8)

and the frequency Ω could be determined from 
2

2 2 1 1
0 u u.c c

a c c a c

r M R
R L C R L
ε εα ωωΩ = − −

 
We should note that the non-ideal model of the shaker with amplifier (7) has principal difference 
from the model constructed and used in the papers [8-10], where it has unlimited energy source 
of variable current. So it is impossible to influence on the frequency what is crucial for stability 
of the process of interaction [12]. 

Transforming equations. (1), (2), and (3) and expressing the current 2 3( )i i+ by ( )u t  
enables us to define 

2
2

12
0

,d x du dxx u
dt dt dt

εμελ εβ+Ω = − −
Ω  (9)

where 
2 1

1
1

( )
;

c m m
mm
+

Ω =
    3

1 0 1

;
( )

c

c a

HMR
m M R L L

ελ εα=
+     0

;a cR Cεμ ελ=
Ω      

0 1

1

( )
.

m m
mm

β
εβ

+
=

 
Concluding, the system of equations (7) and (9) represents of the coupled shaker- 

oscillator model with non-ideal amplifier. 
 
2. NUMERICALSIMULATION RESULTS 
 
Introducing the following dimensionless variables: 

,
g

u
E
ωξ =     ,d

d
ξξ ζ
τ

= =&
    1 ,xx

w
=     

1
1 ,dxx

dτ
=&

    0 ,tτ = Ω  

the system of equations (7) and (9) can be written in the form: 

2 3
1 2 3 4

1

5 6 0 1 7 .

p
x p
p x p

ξ ζ

ζ ξ γ ζ γ ζ γ ζ γ

γ ξ γ ζ γ γ

⎧ =
⎪

= − + + − +⎪
⎨

=⎪
⎪ = + − −⎩

&

&

&

&  

(10)

where the coefficients are 
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32
1 1 32

0

( ) 3 ;c c c
g

a c c c ca c c

M R Mra a E
R L C L CR L C

εγ α
⎧ ⎫

= + + −⎨ ⎬Ω ⎩ ⎭  

2 3
3 0

33 ; ;c c
g

c c c c

M M aa E
L C L C

γ γ= =
Ω

0
4 ;γ εγ
=
Ω 0

5 2 ;ελγ
Ω

=
0

6 3 ;εμγ
Ω

= −
0

7 ;γ εβ
=
Ω  

2

0
0

1
2 .γ Ω

Ω
=

 
The system (10) is nonlinear, so we may study it numerically. The following values of 

variables and constants are used in our numerical simulations [7]: 
700 ;gE V=  2000 ;aE V=  56.5 10 A/ V;a −= ×  160 ;aR = Ω  10 ;cR = Ω  9 3

3 5.184 10 A/ V ;a X −= × ×  
0.015;D =  0.094 ;cL H=  100 ;L H=  1 ;M H=  0.275 ;cM H=  1.0465 .cC mF=  

Using these variables one may obtain the following coefficients for the system (10): 
0 0.995,γ =    1 0.0535,γ =    2 0.63 ,Xγ =   3 0.21 ,Xγ =   4 0.5γ =   

5 0.0604,γ = −     6 0.12,γ = −     7 0.01,γ =  (11)

X is the bifurcation parameter. 
The phase portraits of steady state solutions for the initial conditions 

0.3ξ = , 0.2,ζ = 0.1x p= = are shown in Fig. 2. The limit cycle graph is shown in Fig. 2 a and 
corresponds to regular regimes of oscillations [13] with periodically changing variables ξ and 
ζ . Of course, the variables x and p are also regular and periodic in time. The phase portrait for 
chaotic regimes of interaction are presented in Fig. 2 b. 

 

 
a       b 

 
Fig. 2. Graphs of projection of the phase portrait: a – at X=1, b – X=2 

 
The spectrum in Fig. 3 a has discrete peaks. So that, this graph indicates that there is 

regular regimes in the system at X=1.0. With increasing value of X the transition to chaos 
occurs. Thus, at X=2.0 chaos is realized in the system, when the spectrum in Fig. 3 b is 
continuous [13] and the projection of the phase portrait occupies some area in the phase space 
(Fig.2 b). 
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a      b 

 
Fig. 3. Graphs of the power spectra: a – at X=1, b – X=2 

 
3. SUPPLIED AND CONSUMED POWERS 
 
Power ratio is easy to obtain from the first integrals of the equations of motion, for which 

we multiply the first equation (7) on ( )du / dt , the second equation by ( )dx / dt  and we add both 
equations. As the result we write 

2 2 2 2 2 2
0 1

0

[( ) ( ) ] [( ) ( ) ]
2 2

[ , , ]

[ ] .

d du d dxu x
dt dt dt dt

du du dx duL u K u
dt dt dt dt

du dx dxu
dt dt dt

ε ε εγ

εμελ εβ

+Ω + +Ω =

⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ − −
Ω  

(12)

After integration in time on the left-hand side of the equation (12) the total energy E of 
the corresponding conservative system will be presented. The integral on the right-hand side of 
(12) expresses the sum of the supplied and consumed energies. For steady-state periodic 
solutions m makes forced oscillations, and the generator generates a periodic current. The 
energy of the conservative part of the system for steady-state periodic solutions is constant value 
when integration during the period of the solution. Therefore, the sum of powers of non-
conservative part is a periodic function of time but integration of this function in period time is 
constant. So that the supplied and consumed energies should compensate each other. We may 
write that the following expression for the powers 

0

[ , , ]

[ ]

du du dx duL u K u
dt dt dt dt

du dx dxu
dt dt dt

ε ε εγ

εμελ εβ

⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ − −
Ω  

(13)

should be periodic function for the periodic solutions, quasi-periodic function for the quasi-
periodic solutions and chaotic for the irregular steady-state regimes. For the two last regimes 
there is no constant time period integration the expression (13) during which gives the zero 
value. 

Using the dimensionless variables (10) the expression (13) for the total power P can be 
present in the form 
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2 3
1 2 3 4

5 6 7

( )
( ) .

p
p p P

γ ζ γ ζ γ ζ γ ζ
γ ξ γ ζ γ

+ − + +
+ − =  

(14)

The supplied power 1P  is equal to 
2 3

1 2 3 5 6 1( ) ( ) p Pγ ζ γ ζ γ ζ ζ γ ξ γ ζ+ − + + = . (15)
The consumed power 2P  could be presented as 

4 7 2( ) .p p Pγ ζ γ− = (16)
In Fig. 4 the powers P , 1P  and 2P  are showed for the coefficients (11) and the same 

initial conditions as for in Fig. 2 and 3 for the periodic solution at X=0.1. It is clear could be 
seen that 2P  is oscillating around the negative value (-0.0796) and has amplitudes in order 
smaller than 1P , which is oscillating around the small positive value (0.0796). If we integrate the 
power 2P  over its largest period T, then the quantity will be negative as expected (-0.05T). The 
total power P has the mean value equals to zero and a periodic behavior. If we integrate the total 
power over its longest period, then the integral gives a zero value (the same as the value of 
integral of left-hand side of equation (12). 

 

         
a      b      c 

 
Fig. 4. Graphs of the powers at X=0.1: 

a – the total power P , b – the supplied power 1P , c – the consumed power 2P  

  
a      b      c 

 
Fig. 5. Graphs of the powers at X=3.5: 

a – the total power P , b – the supplied power 1P , c – the consumed power 2P  
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Behavior of powers for chaotic steady-state regimes is much complicated. In Fig. 5 the 
powers P , 1P  and 2P  are presented for the chaotic solution of the system (10) at X=3.5. For that 
case 2P  (Fig. 4 c)) is irregularly oscillating around the small negative value (-0.0051) and has 
amplitudes in order smaller than 1P , which is chaotically oscillating around the small positive 
value (0.0051). Thus, the total power P  has the mean value equals to zero and a chaotic 
behavior in this case. There is no constant periods for chaotic regimes, so an integral value will 
have chaotic oscillations around zero value. 

 
4. THE WAVE ENERGY CONVERTER 
 

 
 

Fig. 6. Schema of wave energy converter 
 
Let us consider the inverse problem: generation of electric current by fluid wave field. 

We build the most simple a wave energy converter, so called WEC. Let’s the base with a coil 
1 ,L  and a magnetic field is immersed in fluid with wave motion. Then the motion of the base 

with a coil 1 ,L  ( )w t  excites an electric current according Lorenz law. This current is related to 
the displacement ( )w t  by the differential relationship [5, 7] 

0
0 0( ) 0;di dwL H

dt dt
+ =  

The quantity 0H  is a constant characterizing the electromagnetic field; 0i  is the exciting current 
of the circuit. 

The law of motion of the centre of mass of the coil with the base (their mass is 1m ) may 
be written in the form 

1 0 0.( ) w Bw Cw Fsm m H i+ + + = +&& &  
Here m is the added mass of the fluid wave motion; B is a radiation damping coefficient; C is a 
constant arising from any restoring force [D.V. Evans and R. Porter, 2012]. And the Ampère 
force 0 0H i  [6, 7] applied to the coil 1 ,L which is rigidly attached to the base. 

Where Fs  is the excitation force owing to the fluid waves on the device [Evans & 
Porter]. For simplicity of analysis we assume that the Ampère force 0 0H i  is negligible small as 
compared with the excitation force Fs . We may omit it. 
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A power of the considering system could be derived by multiplying the equation (i.2) by 
w&  and putting the conservative terms in the left hand side of the equation, others in the right 
hand side. As a result we have 

 
2 2

1

[( ) (w) ] (F )
2 s
d dw C dw dwB
dt dt m m dt dt

+ = −
+  

We may rewrite the right hand side of the equation presenting the supplied and 
consumed powers as 

2
2

W (F ) ;
4 2

s s
s

dw dw F dw FB B
dt dt B dt B

⎡ ⎤
= − = − −⎢ ⎥

⎣ ⎦  
Therefore the maximum power is 

2

maxW
4

sF
B

=  
If Fs  is the excitation force owing to the fluid waves on the device then Fs  and w are 

oscillating function in time. Let us assume they are periodical in time. The mean power *W , 
generated by the fluid waves on the device is the time averaged over a period time. 

So that 
* * * *1W (F )

2 s Bw w= − & &  
Where *F s  is the amplitude of Fs and *w&  is that amplitude of w which is in phased with 

Fs . Now 
*2

*
maxW

8
sF

B
=  

 
CONCLUSIONS 
 
The coupled shaker-oscillator model, which takes into account both direct and reverse 

influence of subsystems is worked out. The methods of modern theory of the dynamical systems 
are used to study laws of the steady-state regimes of the complex model with strong interaction. 
The chaotic regimes were found out. The dynamics of the oscillator system is in good 
correspondence with experimental information of a limited power shaker behavior [9, 10, 11]. 
Found irregularities of phase trajectories of the complex model depend on intensity of the 
amplifier tube. The total power, the supplied power and the consumed power are defined and 
calculated for the periodic and chaotic steady-state regimes. It was shown that the total power is 
oscillating along zero mean value, when the consumed around negative and supplied around 
small positive value. 

In the inverse problem: classical linearized water wave theory is used to develop 
expressions for the power absorption for a particular power take-off mechanism and the 
maximum theoretical power absorption. The advantage of our approach is that we find the 
powers as a function of time, and not just the averaged quantities. And we can calculate them for 
any regular or chaotic regimes. 
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