ДИФРАКЦИЯ УПРУГИХ ВОЛН НА СФЕРЕ В ПОЛУОГРАНИЧЕННОЙ ОБЛАСТИ

И.Т. СЕЛЕЗОВ

Институт гидромеханики НАН Украины, Киев

Рассмотрена задача рассеяния плоских волн на жесткой сфере вблизи плоской жесткой границы. Построены приближенные формулы длинноволнового приближения многократного рассеяния. Проведены расчеты рассеянных полей и диаграмма рассеяния.

введение

Задачи дифракции акустических волн на неоднородностях рассматривались в [1], в случае радиальных неоднородностей в [2]. Применение теорем сложения в многосвязных областях представлено в [3, 4]. В [5] дано содержательное изложение метода изображений. Построение многократно рассеянных полей приведено в [4]. Основные соотношения в сферической системе координат приведены в [6,7]. Решение задачи дифракции волн на сфере в бесконечной области приведено в [8]

ПОСТАНОВКА ЗАДАЧИ

Рассматриваем сферическую систему координат r, θ , φ (радиальная, зенитная и азимутальная координаты), соответствующую прямоугольной декартовой системе координат x, y, z. Ось Оz перпендикулярна плоской границе с началом координат в центре абсолютно жесткого сферического включения (рассеивателя) и направлена из бесконечности к плоской границе.

Приведем физическую трактовку задачи. При набегании плоских волн из бесконечности (плоские волны распространяются вдоль оси *Oz*) в системе возникает дифрагированное поле многократно переотраженных волн.

Из бесконечности в направлении оси *Оz* распространяется плоская волна перемещения

$$\vec{u} = \vec{e}_z u_z (0, 0, z, t) = \vec{u}_0 e^{i(\omega t - pz)}.$$
(1)

Движение упругой среды описывается уравнениями

$$\left(\nabla^2 - \frac{1}{c_e^2} \frac{\partial^2}{\partial t^2}\right) \psi = 0, \qquad \left(\nabla^2 - \frac{1}{c_s^2} \frac{\partial^2}{\partial t^2}\right) \vec{a} = 0, \qquad (2)$$

а вектор перемещений определяется по формуле

$$\vec{u} = \vec{\nabla} \psi + \vec{\nabla} \times \vec{a}, \quad \vec{\nabla} \cdot \vec{a} = 0.$$
(3)

Граничные условия на сфере и на плоской границе имеют вид

$$u_r|_{r=a} = 0, \quad u_{\theta}|_{r=a} = 0, \quad u_z|_{z=h} = 0, \quad \sigma_{xz}|_{z=h} = 0.$$
 (4)

Искомые функции должны также удовлетворять условиям излучения Зоммерфельда.

Выражение для набегающей волны (1) соответствует дилатационным волнам, так что из (1) и (3) получаем

$$\psi = -\frac{1}{ip}u_0 e^{i(\omega t - pz)} + f(x, y, 0, t) + \text{const}.$$
 (5)

Потенциал ψ определен с точностью до произвольной функции, которую можно принять $f \equiv 0$ и записать в соответствии с (2) уравнение для ψ

$$\left(\frac{\partial^2}{\partial z^2} - \frac{1}{c_e^2}\frac{\partial^2}{\partial t^2}\right)\psi(z,t) = 0.$$
 (6)

На основании уравнений (2), (5) и (6) можно написать $p = \omega / c_e$, $q = \omega / c_s$.

В дальнейшем применяются формулы в сферических координатах, так что $\nabla \times \vec{a}$ включает все три компоненты вектора \vec{a} .

Для реализации метода изображений на основе приведенных выше формул применяется известное решение дифракции упругих волн на сфере [8]. В этой работе определение векторного потенциала также сведено к решению волнового уравнения для скалярной функции ξ . Разделением переменных решения для потенциалов приводятся к уравнению Лежандра и уравнению Бесселя для сферических функций.

РЕШЕНИЕ И АНАЛИЗ РЕЗУЛЬТАТОВ

Решения в бесконечной области для функций ψ и ξ записываются в виде

$$\psi = \sum_{m=0}^{\infty} \left[f_m j_m \left(pr \right) + a_m h_m^{(2)} \left(pr \right) \right] P_m \left(\cos \theta \right), \qquad \xi = \sum_{m=0}^{\infty} b_m h_m^{(2)} \left(qr \right) \frac{\partial}{\partial \theta} P_m \left(\cos \theta \right), \tag{7}$$

где $f_m = -(2m+1)$ $u_0 p^{-1} i^{(m+1)}$, $j_m(pr)$ и $h_m^{(2)}(pr)$ - сферические функции Бесселя и

Ханкеля. Например, $j_m(\zeta) = J_{m+\frac{1}{2}}(\zeta) \sqrt{\frac{\pi \zeta}{2}}$.

Первые два граничных условия (4) записываем в виде

$$\left[\frac{\partial\psi}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\,a_{\phi}\right)\right]_{r=a} = 0, \quad \left[\frac{1}{r}\frac{\partial\psi}{\partial\theta} + \frac{1}{r}\left(-\frac{\partial}{\partial r}ra_{\phi}\right)\right]_{r=a} = 0$$

откуда с учетом (7) получаем коэффициенты a_m и b_m

$$a_{m} = f_{m}\Delta_{m}^{-1} \{m(m+1)j_{m}(pa)h_{m}(qa) - pa j'_{m}(pa)[h_{m}(qa) + qah'_{m}(qa)]\},$$

$$b_{m} = f_{m}\Delta_{m}^{-1} \{pa h_{m}(pa) j'_{m}(pa) - pa h'_{m}(pa) j_{m}(pa)\},$$

$$\Delta_{m} = pa h'_{m}(pa)[h_{m}(qa) + qa h'_{m}(qa)] - m(m+1)h_{m}(pa)h_{m}(qa).$$
(8)

Для поля в дальней зоне $\frac{r}{q} >> 1$ находим приближенные решения

$$u_{rm} \cong \sum_{m=0}^{\infty} a_m i^m \frac{1}{r} e^{-i\rho r} P_m\left(\cos\theta\right), \quad u_{\theta m} \cong -\sum_{m=0}^{\infty} b_m i^m \frac{1}{r} e^{-iq r} \frac{\partial}{\partial \theta} P_m\left(\cos\theta\right). \tag{9}$$

В рэлеевском приближении (pa,qa << 1) из (8) и (9) можно установить, что доминирующими являются коэффициенты

$$a_1 \cong i \, 3a \left[1 + 2\left(\frac{q}{p}\right)^2 \right]^{-1}, \qquad b_1 \cong i \, 3a \left[1 + 2\left(\frac{q}{p}\right)^2 \right]^{-1} \left(\frac{q}{p}\right)^2.$$

Решение, удовлетворяющее двум вторым граничным условиям (4), представляем в форме

$$\vec{u}\left(r,\theta,r^{*},\theta^{*}\right) = \sum_{k=1}^{\infty} \left[\vec{u}_{k}\left(r,\theta\right) + \vec{u}_{k}^{*}\left(r^{*},\theta^{*}\right)\right].$$
(10)

где суммарные компоненты перемещений для рассеянного поля кратности k имеют вид

$$\left(\vec{u}_{k}+\vec{u}_{k}^{*}\right)_{r}=U_{rk}=u_{rk}-u_{rk}^{*}\cos\left(\theta+\theta^{*}\right)+u_{\theta k}^{*}\sin\left(\theta+\theta^{*}\right),$$
(11)

$$U_{\theta k} = u_{\theta k} + u_{\theta k}^* \cos\left(\theta + \theta^*\right) - u_{rk}^* \sin\left(\theta + \theta^*\right).$$

Различие в расстояниях от действительного и мнимого препятствий до некоторой точки r, θ и разновременность прихода p и s-волн учитываются формулами вида

$$\exp\left(-i\alpha_{j}\right) = \left(\cos\eta_{1} - i\sin\eta_{j}\right)\exp\left(-ipr\right), \quad \alpha_{0} = qr, \quad \alpha_{1} = pr^{*}, \quad \alpha_{2} = qr^{*},$$

$$\eta_{0} = pr\left(\frac{q}{P} - 1\right), \quad \eta_{1} = \eta_{p} = pr(\eta - 1), \quad \eta_{2} = \eta_{q} = pr\left(\frac{q}{p}\eta - 1\right).$$
(12)

По формулам (10)–(12) после ряда преобразований для однократно рассеянного поля находим

$$U_{r1} \cong -\cos\theta + \left(\frac{2h}{r}\cos\theta - 1\right) \left(\frac{2h}{r} - \cos\theta\right) \left(\cos\eta_p - i\sin\eta_p\right) \eta^{-3} + \left(\frac{q}{p}\right)^2 \left(\cos\eta_q - i\sin\eta_q\right) \frac{2h}{r} \eta^{-3}\sin^2\theta,$$

$$U_{\theta 1} \cong \left[-\left(\frac{q}{p}\right)^2 \left(\cos\eta_{\theta} - i\sin\eta_{\theta}\right) - \left(\frac{2h}{r}\cos\theta - 1\right) \left(\cos\eta_q - i\sin\eta_q\right) \eta^{-3} \left(\frac{q}{p}\right)^2 - \left(\frac{2h}{r} - \cos\theta\right) \left(\cos\eta_p - i\sin\eta_p\right) \frac{2h}{r} \eta^{-3} \right] \sin\theta$$

В правых частях опущен множитель $\frac{a}{r}\exp(ipr)$, левые части нормированы множителем $3\left[1+2(q/p)^2\right]^{-1}$, а перемещения отнесены к u_0 . Поле падающей волны и соответствующее ему поле отраженной от границы волны имеют вид: $u_v = u_v^i - u_v^* = \exp(ipz) - \exp[i(pz-2ph)]$.

Однократно дифрагированное поле описывается формулами выше.

Вторичное дифрагированное поле состоит из двух частей. Падающее поле для первой части можно принять в виде волн, рассеянных на мнимом препятствии и

достигающих действительного препятствия.

Приближенное решение задачи рассеяния представляется в виде

$$u_r \cong U_{r1} + U_{r2}; \quad u_\theta \cong U_{\theta 1} + U_{\theta 2}$$

В качестве примера найдем перемещения u_r и u_{θ} при следующих данных: коэффициент Пуассона v = 0,25; pa = 0,18; r/a = 200. При выбранных параметрах погрешность применяемых формул не превышает 10%. Вычисления выполнены в точках с шагом $\pi/36$. Результаты расчетов приведены на рис. 1.

Рис. 1. Изменение величин рассеянного поля $\text{Im} u_r$ и $\text{Re} u_r$ при h/r = 200 (сплошная линия) и при $h/r = \infty$ (штрих-пунктирная линия)

Из полученных результатов следует появление сильно осциллирующих полей многократно переотраженных волн.

ЛИТЕРАТУРА

- 1. Гринченко В.Т., Вовк И.В. Волновые задачи рассеяния звука на упругих оболочках. К.: Наук. думка, 1986. 240 с.
- 2. Selezov I.T. Diffraction of waves by radially inhomogeneous inclusions // Physical Express. 1993. 1(2). P. 104-115.
- 3. Friedman B., Russek J. Addition theorem for spherical waves // Quart. Appl. Math. 1954. Vol. 12, No. 1. P. 13–23.
- 4. *Selezov I.T., Kryvonos Yu.G., Gandzha I.S.* Wave propagation and diffraction. Mathematical methods and applications. Springer, 2017. 237 р. [В серии Foundations of Engineering Mechanics, DOI 10.1007/978-981-10-4923-1].
- 5. Джексон Дж. Классическая электродинамика. М.: Мир, 1965. 702 с.
- 6. *Кратцер А., Франц Б.* Трансцендентные функции. М.: Изд-во иностр. лит., 1963. 467 с.
- 7. Ватсон Г. Теория бесселевых функций. Т. 1, 2. М.: Изд-во иностр. лит., 1949. 798 с.
- Knopoff L. Scattering of compression waves by spherical obstacles // Geophysics. 1959. Vol. 24, No. 1. – P. 30–39.