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The photoacoustic method offers excellent optical contrast combined with deep ultra-
sonic penetration and resolution for structural and functional medical imaging. In this
work, we focus on designing the 3D filter for efficient and comprehensive suppression
of different kinds of noises that could coexist in photoacoustic signals. We consider
spatial filters with only one parameter to tune: the window size. The Median-Modified
Wiener Filter (MMWF) and Iterative Truncated Arithmetic Mean Filter (ITM) were
compared with well-established denoising techniques (Mean, Median, and Wiener Fil-
ters) to suggest the best approach to practical use. Their performance was tested
using Shepp—Logan phantom of size 256 x 256 x 256 voxels. In addition to the visual
quality, we considered the Signal-to-Noise Ratio (SNR), Mean Square Error (MSE),
Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM). Perfor-
mance of the proposed filters was also assessed in terms of processing time. Simulation
results reveal that the ITM and MMWF filters outperform the existing state of art
filters by providing better visual quality along with PSNR, SSIM, and MSE values for
the Shepp—Logan phantom corrupted by the Gaussian or impulse noise and the mix of
these noises.

KEY WORDS: denoising, image processing, noise reduction filter, spatial filtering,
photoacoustic imaging, fuzzy sets

1. INTRODUCTION

In the last decade, photoacoustic (PA) imaging is one of the fastest growing biomedical
imaging modality. This method has multiple already implemented and envisioned applica-
tions in biomedical research and clinical practice (diagnostic applications in cancer research,
brain imaging, drug development and treatment monitoring). The power of the technique is
that it draws upon the advantages of high optical absorption contrast and deep ultrasonic
penetration. But, there are multiple frontiers still open for many challenges related to re-
moval of image artifacts, multi-spectral data processing, image quantification, reconstruction
strategies and real-time operations. One of these problems is denoising of PA signals.
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It is well known, that bandwidth of PA signals can be quite wide (several tens of MHz).
There are two reasons for this. The first one is that it depends on the duration of the light
pulse. The second reason is that frequency spectrum of the PA signals depend on the size
of the target [1]. In addition, PA signals are very sensitive to noise generated by peripheral
equipment (power supply, stepping motor of semiconductor laser and so on). Due to these
reasons, the recorded PA signal is modified from its original pressure profile. That is why in
real life we meet with situation when the spectrum of the noise overlaps the bandwidth of
the PA signal. This effect leads to a degradation of components of PA signal. So, without
signal preprocessing, the reconstruction images might suffer from low signal-to-noise ratio
and low resolution.

Since denoising is at the very beginning of the preprocessing operations, it has a great
impact on the results of down-stream steps. The main advantage of a good denoising is that
it can prevents the overestimation of the image background and helps extracting faint, yet
significant, features, while prevent the formation of misleading features [2].

There are several ways to reduce the noise level from the raw data: signal averaging,
“moving averaging” or frequency filtering. However, signal averaging time is limited by
physiological changes in the tissue, tissue movement due to breaths or heartbeats, muscle
movements and shifts of another nature. Thus, the averaged raw data can still contain
significant noise. “Moving averaging” works like a low-pass filter: it is suitable for suppressing
high frequency noises when the signal itself contains primarily low frequency components.
Frequency filtering can substantially suppress the noise level if the noise spectrum has limited
overlap with the real PA pressure profile spectrum. However, the “moving averaging” method
can smear out sharp changes in the original signal, and the frequency filtering method can
potentially discard useful frequency components overlapped with noise. So, the shape of
PA signals and kinds of noise is too complicated for these methods of filtering and often
the results are unsatisfied. Therefore, it has great practical significance to find a new filter
method with better filtering precision and noise suppression.

It is important to notice that most previous methods of noise reduction in PA signals are
based on a quasi-three-dimensional approach, when sensor data on the surface are cleaned
consecutively from one moment of time to next moment. Then is formed a three-dimensional
image data composed of pure slices. This approach transforms three-dimensional spatial-
temporal problem into a set of two dimensional spatial problems. But this method destroys
the close relationship between slices in time domain. The residual noise and denoising arti-
facts differ from frame to frame causing in this way an unpleasant “flickering” effect. There-
fore, the results of reconstruction, based on this approach, are unsatisfactory. Furthermore,
in PA imaging, the problem of reconstruction is always three-dimensional. This is due to the
nature of the optoacoustic effect, when the recovery requires collecting information from the
entire volume. This means that the more reasonable and natural method is 3-dimensional
filtering when the object of filtration is the original 3D image.

Due to the above reasons, the objective of the present study was to design of simple
3D filter for effective and comprehensive suppression of different kind of noises that could
coexist in PA signals.
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2. IN SILICO EXPERIMENT

To predict the effects of different kinds of noise to real data different kinds of artificial
random noise was added to simulated image. The resulting noisy images were used as input
for the different filters.

For evaluating of performance of developed algorithms we used 3D Shepp-Logan head
phantom — a test image used widely by researchers in tomography. This phantom consists of
a number of ellipses of varying sizes and densities. The Shepp-Logan phantom was selected
as a reference due to its simplicity, yet appositeness in representing prominent anatomi-
cal features of the human head, as well as its omnipresence among the image processing
community.

Datasets of corrupted by noise images were created with 10 dB peak signal-to-noise-ratio
(PSNR) for Gaussian noise, “salt&pepper noise”, mixture of Gaussian and Alpha-stable
noise, mixture of Gaussian and Speckle noise.

These noisy images were used to predict which noise reduction methods are likely to be
fruitful, as well as to provide a comparison of the effects of noise on the different filtering
algorithms.

3. NOISE

It should be emphasized that noise within a real digital image does not arise from a single
source. Every element in imaging chain contributes to noise.

In the real practice, the types and mixtures of noises present in the images are not known
a priori. That’s why we used rather general model for a mixed-type noise which contains
the additive and exclusive noise:

f(dy,...,d,) +n(dy,...,d,)  with probability p,

e(dy,...,dp) with probability 1 — p,

where ¢(dy,...,d,) is the corrupted image, f(di,...,d,) is the original signal (image),
n(dy,...,d,) is the additive noise (it can be short- or long-tailed noise, such as Gaussian
or Laplacian noise) and e(dy,...,d,) denote exclusive noise. The exclusive noise could be
impulsive noise, such as pepper&salt noise. The occurrence probability of the two types of
noise is controlled by p € [0,1]. The exclusive noise occurs if p is smaller than 1.

For additive noise we used Alpha stable noise.

Alpha stable noise, also called Lévy noise, was put forward by Lévy when he studied
the Generalized Central Limit Theorem [3,4]. Alpha stable distribution is widely used to
analyze and model signals for many reasons: there exist many non-Gaussian signals with
an impulsive nature and heavy tail in real life, including underwater signals, atmospheric
environment signals, telephone line noise and some mobile communication signals and so on.

There is no closed-form expression for the probability density of alpha stable noise, but
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it can be described by its characteristic function, which can be expressed as follows:
() = exp (itp — 7°|t|*[1 — ifsign (w(t, @)]') ,

tg(ra), a#1,
w(t,a) =

—Inft|, a=1,

T

where « is the characteristic exponent and the most important parameter characterizing
alpha stable noise (0 < a < 2). The smaller the value of « is, the more severe the heavy tail
of the distribution is, as is its impulsive nature.

When a = 2, the alpha stable distribution becomes a Gaussian distribution with mean
p and variance o = 2y%. In the cases of « = 1, =0 and o = 1/2, 8 = 1, the alpha stable
distribution becomes a Cauchy distribution and a Lévy distribution respectively.

Next type of noise which is very important in PA is speckle noise [5]. It is a “granular”
noise that commonly observed in almost all coherent imaging systems such as laser, acous-
tics and SAR (Synthetic Aperture Radar) imagery. The source of this noise is attributed
to random interference between the coherent returns. In this case, the waves emitted by
active sensors travel in phase and interact minimally on their way to the target area. After
interaction with the target area, these waves are no longer in phase because of scattering.
Once out of phase, waves can interact to produce light and dark pixels known as speckle
noise. Images with speckle noise will results in reducing the contrast of image and difficult
to perform image processing operations like edge detection or segmentation. It has been ex-
perimentally verified in several works that over homogeneous areas, the standard deviation
of the signal is proportional to its mean. This fact suggests the use of the multiplicative
model for the speckle noise.

We assumed that offered models may be most adequate to real medicine practice.

4. DESIGN OF FILTERS

Most denoising methods require that some of its parameters be set manually to optimize
their performance. These filters can give very high performance but very often they are
impractical in real medicine condition. That’s why we decided to use simplest spatial filters
which have only one control parameter — window size. This parameter is related to the
minimum size of the feature to be considered in the image analysis and is intuitive clear in
real practice.

The first two spatial filters that we considered are the mean and median filters. The
mean filter is a simplest linear filter while the median is a simplest nonlinear filter.

The mean filter is optimal in suppressing of additive Gaussian noise. On this base emerge
rich class of the linear finite impulse response (FIR) filters which are effective in attenuating
the additive Gaussian noise but not the long-tailed noise. Moreover mean filter blurs image
structures.

On the contrary, the median filter has the advantages in suppressing the long-tailed noise.
This filter is optimal for the removal of impulse noise on images and does not blur edges. Its
disadvantages, mainly the inflexibility in the filter structure, the destruction of fine image
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details, and its relatively poor performance in attenuating additive Gaussian noise and other
short-tailed noise.

More advanced linear technique for spatial filtering is the Wiener filter (Minimum mean-
square error (MMSE) filter), which exhibits varying behavior based on local image statistics.
Wiener filter is applied to a signal adaptively, tailoring itself to the local signal variance.
This filter performs less smoothing where the variance is large, while where the variance is
small, it performs more smoothing. It works best with Gaussian or uniform noise and for
n-dimensional hypercube is defined as follows:

02—V2

bw(dl,...7dn):,u+ o2 [a(dly---adn)_ML

where dy, ..., d, is the location of a discrete point in an n-dimensional hypercube;
1 (dr,- )
b= =7 aldy, ...,
IT D, = "
i=1,..n Lo €1

is local (i.e., considered in the sliding window) mean, D; - the length of the i-th dimension
of the hypercube;
1
2 _ 2
= D ) > aldy, ... dy) = 4l
i=1,...,

n 1,---7dne’77

is variance around each pixel in n-dimensional signal; a(dy,...,d,) is a notation to identify
each pixel contained in the area n of the n-dimensional signal.

By operating in this manner, the MMSE filter preserves image details while removes noise
and often produces better results than standard non adaptive linear filtering.

To merge the complementary qualities and abilities of median filter and the Wiener filter,

reciprocally nullifying the respective defects was suggested nonlinear adaptive spatial filter
(Median-Modified Wiener filter MMWF) [6]:

bmmwf<d17“‘7dn):ﬂ+ 5_2 [a’(dlu"’?dn)_ﬂ]a

where i = Median[a(dy, ..., d,)] is local (i.e., considered in the sliding window) median;
- 1 i
52 — ﬁ Z la(dy,. .. d,) — fi]?
izt dieedn€n

is variance around each pixel in n-dimensional signal average squared deviation from the
median fi.

This modification in the original Wiener filter formula has very significant consequences
which are caused by the introduction in an adaptive contest of the median operator.

In particular, this filter facilitates removing spike noise from the signal background (typ-
ical of the median filter) while preserving unaltered edges. Last property partially provided
by the Wiener filter that preserves edges but unfortunately modifying their morphology. The
median operator is much less affected by these outlier values in the distribution of the local
variances, thus provides a more robust estimation of the noise variance [6].
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The merits of the mean and median filters lead also to another branch of filters which
make compromises between these two filters. The iterative truncated arithmetic mean (ITM)
filter has been recently proposed [7]. It iteratively truncates the extreme values of samples
in the filter window to a dynamic threshold. This threshold guarantees that the filter output
converges to the median of the input samples. A proper stop criterion enables the ITM filter
owning merits of both the arithmetic mean and the order-statistical median operations.

5. METHODS OF FILTERS TESTING

There were chosen four measures of noise reduction quality: normalized mean square
error (MSE), signal to noise ratio (SNR), peak signal to noise ratio (PSNR) and Structural
Similarity Index (SSIM).

This metrics are expressed (in dB) as

MAX;
PSNR = 20log;, (
v MSE
P
SNR = 10log,, [ —Senal
PHOISG
1 m—1n—1
MSE = — K (i, )
mn 5= j:O

Here, MAXj; is the maximum possible pixel value of the image (when the pixels are
represented using 8 bits per sample, this is 255); I(4, 7) is noise-free m x n gray scale image;
K(i,7) is its noisy approximation; P is average power.

These methods directly measure the pixel-by-pixel differences between the images. They
are attractive metrics for the loss of image quality due to its simplicity and mathematical
convenience. But they are not well matched to perceive visual quality.

An alternative framework, for quality assessment based on the degradation of structural
information is Structural Similarity index [8]. SSIM is designed to improve on traditional
methods such as PSNR and MSE, which have proven to be inconsistent with human visual
perception. SSIM assesses the visual impact of three characteristics of an image: luminance
l(x,y), contrast c¢(x,y) and structure s(x,y). The overall index is a multiplicative combina-
tion of the three terms:

SSIM(z, ) = [1(z, v)]*[c(x, )]’ [s(z, )],

where
2:“90“:)0 + 2010 + C2 Ozy + C3
sy = 5 slay) = — :

l 'x? = T . 9 | ’ - T
(z.9) Pz + pz+ e 02+ o2+ e 0,04+ C3
Ha, [y, Oz, 0y, and o, are the local means, standard deviations, and cross-covariance for
images. If « = f =~ =1 (the default for exponents), and ¢3 = ¢3/2 (default selection of c3)

the index simplifies to:

(2atty + 1)(20,, + c2)
(12 + 12+ )02 + o2+ &)

SSIM(z,y) =
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Fig. 1. Central slices of the 3D Shepp-Logan phantom

c1 = (k1 L)? and ¢y = (koL)? are two variables to stabilize the division with weak denomina-
tor; L is a dynamic range of the pixel-values (typically, this is 2bis/Pel _ 1): k) = 0.01 and
ko = 0.03. The resultant SSIM index is a decimal value between —1 and 1, and value 1 is
only reachable in the case of two identical sets of data.

Firstly, for evaluating of performance of developed algorithms we used 3D Shepp-Logan
head phantom being a test image used widely by researchers in tomography. Fig. 1 shows
central sections of this 3D image.

Images corrupted by noise were used to predict which methods of noise reduction were
likely to be fruitful, as well as to provide a comparison of the effects of noise on the different
filtering algorithms. Datasets were created with 10 dB peak signal-to-noise-ratio (PSNR)
for Gaussian noise and for mixture of Gaussian and Alpha-stable noise. There were applied
5 designed 3D filters: mean filter, median filter, spatial Wiener filter, modified median filter
and Iterative Truncated Arithmetic Mean Filter. In all cases for all filters were used 3-voxels
windows (kernels). Shepp-Logan phantom was 256 x 256 x 256 size (in voxels). For the
first three filters filtering was used twice for the same image and for Iterative Truncated
Arithmetic Mean Filter we used 3 iterations. Examples of images generated from these
noisy datasets are included below Fig. 2a shows results of filtering 3D images corrupted by
Gaussian noise with PSNR=10 dB, and Fig. 2b shows results of filtering for mix of Gaussian
and impulse noise with PSNR=10 dB.

After applying of these four denoising methods the closest reconstruction to the “ground
truth” image (Fig. 1) in the Shepp—Logan case was obtained using MMWF and ITM tech-
nique. This is confirmed in the plots (Fig. 3), which depict cross-sections through a central
region of the phantom. It can be observed that for these filters the borders of the ana-
lyzed region are well preserved, and only small deviations from the ground truth are present
(Figs. 2 and 3).

Tab. 1 summarizes the comparison between the performance of different kinds of filters
for one of more practical mix of noises, namely, the sum of Gaussian and alpha-stable noise
(PSNR = 15 dB). There were conducted 20 numerical experiments for every kinds of noise
for every filter and then averaged metrics were calculated. Evidently, the best result gives
MMWEF filter, however at a steep computational cost.

Fig. 4 demonstrates the performance of the proposed filters for other combinations of
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Fig. 2. Simulation results for central transverse slice of the Shepp-Logan phantom corrupted with
noise (PSNR=10 dB):

a — Gaussian noise, b — mix of Gaussian and impulse noise
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Fig. 3. Central transverse slice in a Shepp-Logan phantom with mix of Gausian and Alpha stable
noise (right part) and after MMWTF filtering (left part) along with profile lines of the central slices
over a central region. The noise-free data profile is shown in black, noisy profile in green, ITM
profile in light blue dot line, median profile in red dot line

Tab. 1. Mix of Gaussian and Alpha stable noise

| Filter | MSE | SNR | PSNR [SSIM | Time (s) |
Noise [ 2057.5 £ 16 [ 50.96 & 0.03 | 15.00 + 0.03 | 0.09
Mean | 680.2+3 [55.7740.02|19.80 +0.02 | 0.11 7
Wiener | 482.28 +7 |57.26 +0.06 | 21.30 £ 0.06 [ 0.13 8
MMWF || 113.55 +2 [63.54 +£0.07 [27.58 £0.07| 0.16 | 485
ITM || 271.98+4 [59.75+£0.09[23.79£0.09] 0.14 | 53

filters and noises. All measures were normalized to be comparable.

We see that almost always the MMWEF and I'TM filters scored first or second in each single
denoising category (Gaussian or salt&pepper noise) and are the best filters for denoising of
mixture of different kinds of noise. Unfortunately ultimate decision for global evaluation of
denoising quality is not simple problem because of a lot of amount of data.

It is especially clear if take into account that the fulfillment time may be very important
to evaluate of the performance of the different algorithms. An algorithm can lose its interest
if its runtime delays the normal workflow of a service. Hence the runtime measurement is
very important too. Tab. 1 shows the duration, in seconds, of each filtering method (last
column).

6. FUZZY SETS EVALUATION

So, we meet with situation of a hard choice, when one alternative is better in some ways,
the other alternative is better in other ways, and neither is better than the other overall.

One of the most popular and efficient approaches in case of reasoning and decision making
in presence of uncertainty is based on fuzzy sets theory [9,10].

In conventional dual logic a statement can be true or false and nothing in between. Most
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Fig. 4. Performance of the proposed filters for various combinations of filters and noises

of traditional tools for modeling and reasoning are crisp and precise in character. By crisp
we mean dichotomous that is, yes-or-no type rather than more-or-less type. However, more
often than not the problems in real world are not always true-or false type. Very often real
situations are uncertain or vague in a number of ways. From the inception of the theory,
a fuzzy set has been defined as a collection of objects with membership values between 0
and 1 (complete exclusion and complete membership). The membership values express the
degrees to which each object is compatible with the properties distinctive to the collection.

In case of our study, the class of objects is the “filter class” where each object is one of
the four estimated filters: Mean filter, Wiener filter, MMWF filter and ITM filter. For each
measure of quality, a fuzzy set is defined, composed by a class of filters (objects) able to
suppress the certain noise. In our case, we have four different fuzzy sets, one for each kind of
measure: MSE, PSNR and ISSIM. For each fuzzy set, a membership function is defined that,
on a scale between 0 and 1 assigns to each filter a grade of membership to the considered
fuzzy set. The membership function was constructed in the following way: for each denoising
evaluation the minimum and the maximum of every measures was considered, then the filter
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Tab. 2. Fuzzy set evaluation of the best filter for different noises

’ Filter H Gauss Impulse ‘ Gauss+Impulse ‘ Speckle+Gauss ‘Time (s) ‘
Mean 0.81 0.13 0.62 0.97 7
Wiener 0.99 0.17 0.35 0.92 8
MMWF 0.96 1.00 1.00 0.93 485
ITM 0.90 0.43 0.87 1.00 53
Tab. 3. Fuzzy set evaluation of the best global filter
Membership Values
Filter Time (s)
without time without time all parameters
and speckle noise
Mean 0 0 0 7
Wiener 0 0 0 8
MMWF 0.05 0.83 0 485
IT™M 0.34 0.34 0.34 53

performances were rescaled in the range between 0 and 1.

Our goal is to define which filter offers the best performance for contemporaneous de-
noising of the four different kinds of noise: Gauss noise, impulse noise, Mixture of Gauss and
Impulse noise, mixture of speckle and Gauss noise. According to the rules of fuzzy set theory,
the best filter is the filter that offers the highest minimum grade of membership between the
considered fuzzy sets.

Tab. 2 summarizes the results of the fuzzy sets evaluation of the best filter (all cells con-
tain the membership values and last column contains the time of working of the algorithm).
But from the table is still difficult to appreciate which filter gives the best result.

Applying the same approach for this data we can define which filter is best for global
denoising.

The “global denoising” set is an intersection of the four different kinds of denoising sets
(Impulse noise, Gaussian, Gaussian+Impulse and Gaussian+Speckle) and of the time of
computing for every filtering algorithm. For this kind of denoising (Tab. 3, last column), the
best filter is the I'TM algorithm.

In the context of real experiment sometime we may know that image definitely does not
contain some kind of noise or some parameters. Then we cannot consider these factors in
our fuzzy set algorithm. For example, the case when time of computing is does not matter
and image does not contain speckle noise is presented in column three of the Tab. 3. As it
can be seen, in this situation the best filter is the MMWF filter.
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7. CONCLUSIONS

The objective of the present study was to show the usefulness of the 3D adaptive spa-
tial filters with advantages that include low cost, easy visualization, and amenability to
experimental manipulations.

We compared the performance of the designed 3D MMWEF and ITM nonlinear adaptive
spatial filters, and of three well-established denoising techniques (Mean, Median, Wiener),
for removal of four different kinds of noise: Gaussian (PSNR 10 dB), mix of alpha-stable
and Gaussian noise (PSNR 10 dB), mix of speckle and Gaussian noise (PSNR 10 dB) and
“salt&pepper” noise.

Extensive computer simulations of the indicates superior results in terms of both quanti-
tative evaluation measuring indices and visual appearance for ITM and MMWF approaches
for each of the noise category (impulse or Gaussian) and for contemporary suppression of the
different kinds of noise (global denoising). The quantitative evaluations for global denoising
were made by means fuzzy sets theory.

Designed filters meet most of the PA image denoising requirements in real practice:

e The proposed filtering approach allows efficient noise suppression, simultaneously pre-
serving unaltered edges and morphology.

e MMWFEF and ITM filters need only one intuitive clear parameter for tuning.
e Our filters are easy to implement and fast to use.

e The ITM filter uses only arithmetic operations, so it is faster, than filtering based on
another principles.

e Developed filters are almost invariant to noise features and do not need a priori infor-
mation.

e MMWFEF and ITM filters may be use to non-stationary signals with unstructured vari-
ations in intensity and size.

The adaptive characteristics of the MMWEF and I'TM filters allow consider them as ver-
satile and invariant approaches to reduction of different types of noise, attaining the first
score in global denoising.
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O. I' Pynaunskuii, M. O. Pyaaunpka, JI. B. TkadeHko
Iloniepeansi 06pobKa i mMoKpaIllleHHS SIKOCTi 300pa>*keHHsI Ipu
ToMoOrpadivuHiii ONTOAKYyCTUYHII PEKOHCTPYKITIT

QoToakycTUIHNI METOJ, 3a0€31eUy€E 9y/I0BY OINTUIHY KOHTPACTHICTH Y TIOETHAHH] 3 TVIU-
OOKMM yJIbTPA3BYKOBUM IPOHUKHEHHSM 1 PO3IIIBHOIO 3JATHICTIO JJIsT CTPYKTYPHOI Ta
YHKIIOHAJIBHOT MEIUYIHOI BizyaJiizarii. ¥ Iifi poboTi MU 30CepeuInCh Ha ITPOEKTY-
BaHHI TpuBHMipHOro (pibTpa My ePEeKTUBHOTO Ta BCEOITHOrO NPUILYIIEHHS PI3SHUX
BUJIIB IIyMiB, 9Ki MOXKYTb CIIIBICHyBaTH B (POTOAKYCTUIHUX CUTHAJIAX. PO3IIsIIaInch
IIPOCTOPOBI (DIIBTPH, SIKi MAIOTh JIUIIE OJAUH ITapaMeTp JIjIsI HAJAIITYBAHH — PO3MIp Bi-
kua. /s Toro, 1106 3amporonyBaTu HARKPAIUH JIJIsi IPAKTUYHOTO BUKOPUCTAHHS ITiJ1-
XiJI, TPUBUMIPHI HeIiHINHI aJanTUBHI TPOCTOPOBI MiAbTPU — MediaHHO-MOAN(IKOBaAHMIH
dinsrp Binepa (MMWEF) rta irvepamiitanit ycidenuit apudmernanuii cepeuiit dbigbTp
(ITM) — nopiBHIOBAJIM 3 yCTAJEHUME METOJAMHU [IyMO3aXUCTY (CepejiHiMu, Me[laHHUMU
Ta BiHepiBCbKUME (ijbTpamn). Ixmio MPOAYKTUBHICTE OYJIO IIepPeBipeHO 3a JI0ITOMOTOIO
danroma [lenmna—Jlorara poszmipom 256 x 256 x 256 BokceJiis. Ha gogarok 10 BizyaabHOT
SIKOCTI, JIOCJIJIZKYBAJIMCh Taki apamMeTpu siK criBsigHomenHs curias/myM (SNR), ce-
penust kBagparudna noxubka (MSE), cuissinnomenns nik /mym (PSNR), crpykryprumit
inzexe nogiorocti (SSIM). ITpoaykTuBHiCTE 3anpoIOHOBaHUX (DLIBTPIB ONIHIOBAIACK i
3 TOYKM 30Dy dYacy, BUTPaIeHOro Ha 0OpOOKy. Pesysibraru MojieioBaHHS MOKa3aJsu,
mo ITM i MMWF &insrpu mepeBepIinyoTh icHy049i (MiIbTpu, 3abe3medyodn Kparry
Bizyauibny sikictb, PSNR, SSIM i znauenns MSE s danroma Ilenma—Jlorana, mo-
IIIKOJI2KEHOT'0 TAyCOBUM YU IMITYJILCHUM ITYMOM 1 CYMIIIIIITIO TIUX TITYMiB.

KJIFOYOBI CJIOBA: mrymoizoisiiisi, 06pobka 300pazkeHb, (PLIBTP ITyMO3ATTYIIeHHS,
IIPOCTOPOBAa (PLIbTpallist, poOTOAKYCTHIHA Bi3yaJsri3allist, HEIITKI MHOXKHHH

A. I Pygaunkuaii, M. A. Pygaunkas, JI. B. TkauyeHkoO
IIpeaBapurenbHasi 00paboTKa U yJIydllleHre KadyeCcTBa N300pa>keHusl IIpu
ToOMOrpaduIecKoil OITOAKYCTUIECKON PEKOHCTPYKIN

PoToaKyCTUIECKUN MeTOJ| 0DeCIednBaeT MPEBOCXOIHBIN ONTUYECKUN KOHTPACT B CO-
YeTaHuu C TVIyDOKUM YJIbTPa3BYKOBBIM IPOHMKHOBEHUEM U pPa3pelleHneM JJisd CTPYK-
TYpHOH ¥ (DYHKIMOHAJBHON MEIUIUHCKON BU3yajm3anuu. B 3Toif paboTe MBI CKOH-
IIEHTPUPOBAJINCL Ha pa3paboTke TpexmepHoro Guabrpa g 3HEGHEeKTUBHOIO U BCe-
CTOPOHHEIO TIOJABJICHUS MIyMOB PA3JIMYHOI'O THIIA, MOTYIIUX COCYIIECTBOBATH B (DO-
TOAKYCTUYIECKUX CUTHAJIaX. PaccMaTpuBaCh MPOCTPAHCTBEHHBIE (PUILTPHI, KOTOPHIE
UMEIOT TOJIBKO OJIMH IapaMeTp Jijis HACTPOWKM — pas3mep okHa. [yt Toro, 4robbl
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MPEJJIOKUATE JIyUIIHi JJIs TPAKTHIECKOTO MCIIOJIb30BAHUS MTOJIXOl, HEJIMHEITHBIE TPeX-
MepHBIE aJIAIITUBHBIE IPOCTPAHCTBEHHBIE (DUJIBTPHI — MOIUMDUIMPOBAHHBIA 11O MeJIH-
ane buabrp Bunepa (MMWF) u ureparuBHblil ycedeHHBIN apudMeTndeckuii cpei-
uuit bunsrp (ITM) — cpaBHUBAIM ¢ XOPOIIO U3BECTHBIME METOAMU IIIy MOIIO/aBIICHUST
(cpetHIME, CpeJMHHBIME ¥ BUHEPOBCKUMHE dbuiibTpamn). Ix paborocrnocobHoCTh Oblia
mpoBepera ¢ oMok danroma [lenma—/lorana pasmepom 256 x 256 X 256 Bokceeii.
B nomnosnenue K BU3yaJibHOMY KadeCTBY, UCCIEIOBAJINCH TAKHE ITapaMeTPhl KaK OTHO-
nrerne curnas/mym (SNR), cpenneksanparuanast onmmbka (MSE), nukoBoe orHorerne
curaai/mym (PSNR) n crpykrypusriit ninexc nogobus (SSIM). IIponssogurensnocTs
npeJiyilaraeMbix (QUJIBTPOB OIEHUBAIACH U C TOYKH 3PEHUsI BPEMEHU, 3aTPadeHHOro Ha
0bpaboTKy. PesysnbraTs MmogenupoBanns mokasasin, 9ro GuasTpsl [TM 1 MMWEF mpe-
BOCXO/ISIT CYIIECTBYIOIINE TIOAXOIbI, 00eCIIenBasi JIydIline BU3yaJbHOe KAIeCTBO U 3HA~
qenust PSNR, SSIM, MSE nysa danroma [llenma—/lorana, mCKaXKeHHOTO IayCCOBCKIM
MJIA UMITYJIBCHBIM IIIyMOM U CMECBIO TUX IIyMOB.

KJIFOYEBBIE CJIOBA: niymounsoJisiiusi, 06paboTka n300parkeHuii, (pUabTp HIYyMOIIO-
JaBJIEHHsI, IPOCTPAHCTBEHHAS (PUAbTPALHsI, (POTOAKYCTHIECKAs] BU3YaIH3aLHs, HeUeT-
KHe MHOXKECTBa,
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