УДК 532.5.07

ОСОБЕННОСТИ УСКОРЕННОГО ДВИЖЕНИЯ В ВОДЕ ТЕЛ РАЗЛИЧНОЙ ФОРМЫ.

А. Г. БЕ ЛОУСОВ

Институт зоологии им. И.И.Шмальгаузена НАН Украины, Киев

Получено 11.04.98

Приведены результаты экспериметнального исследования ускоренного движения в воде комбинированного тела вращения, шара и прямоугольных плоских пластин, проведенного в вертикальной гидродинамической трубе. Движение объектов исследования начиналось из состояния покоя и происходило под действием силы тяжести. Показано, что каждому типу объектов присущ индивидуальный характер ускоренного движения при том, что во всех случаях этап движения с монотонно меняющейся скоростью и ускорением сменяется этапом движения рывками с резкими колебаниями значений этих величин.

Наведені результати експериментального дослідження прискореного руху в воді комбінованого тіла обертання, кулі та прямокутних плоских пластин, яке було проведено в вертикальній гідродинамічній трубі. Рух об'єктів дослідження починався в стану спокою та відбувався під дією сили тяжіння. Показано, що кожному типу об'єктів притаманний індивідуальний характер прискореного руху при тому, що в усіх випадках етап руху в шидкістю та прискоренням, що монотонно змінюються, переходить в етап руху ривками в різкими коливаннями значень цих величин.

The outcomes of experimental research of accelerated motion in water of combined body of revolution, sphere and rectangular flat plates conducted in a vertical hydrodynamic tunnel are adducted. The motion of objects of research started from a state of rest and originated by gravity. Is showed, that the nature of motion of each object is individual for each type of objects, and that for all there is a gang of phase of motion with monotonically varied speed and acceleratiov by phase of motion hitches with sharp oscillations of values of this values.

введение

Для технических устройств, совершающих поступательное движение в реальной жидкости, энергетические затраты минимальны на участке пути S при условии его преодоления со средней скоростью $V_{\rm cp}$ [6]. Плавающие животные минимизируют свои энергозатраты иным способом, которые в силу ряда причин [3, 5] не могут быть непосредственно использованы в технике. Этим обстоятельством обусловлен интерес к изучению особенностей нестационарного движения тел, которое характеризуется чередованием периодов ускорения и торможения и зависит от соотношения движущей силы к массе тела, его формы, закона движения и характера обтекания поверхности [4, 7].

МАТЕРИАЛЫ И МЕТОД

В данной работе приведены результаты лабораторных исследований частного случая прямолинейного поступательного движения в воде тел различной формы, начинающих движение из состояния покоя и достигающих, в некоторых случаях, состояния движения с некоторой установившейся скоростью V_{vcr}.

Исследования проводились в вертикальной гидродинамической трубе высотой 3.6 м и диаметром 0.29 м [1]. Через прозрачные окна в ее стенках с помощью фотоэлектронной системы осуществлялась непрерывная регистрация пространственно-временных характеристик движения объектов исследования, которые двигались вдоль оси трубы по направляющей, выполненной из тонкой нержавеющей проволоки. Обработка результатов экспериментов давала возможность получить для каждого объекта зависимости пути, скорости и ускорения от времени. Суммарная погрешность полученных результатов не превышает 3%. Аналогичные установки и близкие методики использовались в исследованиях [2, 9].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Исследовались ускоренные движения комбинированной модели, шара и плоских пластин (рис. 1). Модель а представляет собой комбинированное тело вращения, носовой оголовок которой является полушарием, средняя часть - отрезком прямого кругового цилиндра, а хвостовая часть – параболоидом вращения. Модель δ – шар, а модель в – прямоугольные плоские пластины, которые вырезались из металлического (стального, дуралюминового или алюминиевого) листа для того, чтобы при неизменной геометрии пластин изменить их весовые характеристики. Весовые характеристики моделей а и δ изменялись путем заполнения их внутренних водонепроницаемых полостей свинцо-

Рис. 1. Схематическое изображение объектов исследования:

а – модель в виде комбинированного тела вращения; б
– шар; в – плоская прямоугольная пластина

Все объекты исследования начинали движение из состояния покоя в верхней части трубы и двигались под действием постоянной по величине силы, равной разности между весом объекта в воздухе и Архимедовой выталкивающей силой в воде. Величина движущей силы объектов определялась гидростатическим взвешиванием. Значения их весовых характеристик приведены в таблице.

Движущая сила моделей а и б задавалась так, чтобы ее величина принимала значения $0.5 \cdot P_o$, P_o и $1.5 \cdot P_o$ для комбинированной модели и $0.5 \cdot P_o$, P_o , $1.5 \cdot P_o$ и $2 \cdot P_o$ для шара, где P_o – их вес в воздухе при нулевой плавучести. Все объекты исследования имели гидродинамически гладкую поверхность.

По результатам обработки значений пространственно-временных характеристик движения каждого из объектов были построены графики их пути, скорости и ускорения в виде функции времени. Кривые, демонстрирующие характер изменения их скорости, представлены на рис. 2. Кривые 1 – 3 иллюстрируют изменение скорости комбинированной модели для значений движущей силы $0.5 \cdot P_o$, P_o и $1.5 \cdot P_o$ соответственно, кривые 4 - 7 иллюстрируют изменение скорости шара для значений 0.5 · Po, Po, 1.5 · Po и $2 \cdot P_o$ соответственно, а кривые 8 – 10 – изменение скоростей плоских пластин, для которых значения масс и движущих сил приведены в таблице под соответствующими номерами.

Из графика видно, что комбинированная модель ни в одном из проведенных экспериментов не движется с установившейся скоростью V_{уст}. При этом своей максимальной величины значение ско-

Рис. 2. Зависимости скоростей движения объектов исследования от времени. 1, 2, 3 – комбинированное тело вращения; 4, 5, 6, 7 – шар; 8, 9, 10 – плоская пластина

рости каждый раз приобретает в конце пути вблизи дна трубы. Числа Рейнольдса, взятые по длине модели и значениям мгновенной скорости, при которой монотонно меняющееся ускорение приобретает колебательный характер, принимают значения $Re_1 = 4.5 \cdot 10^5$, $Re_2 = 5.6 \cdot 10^5$ и $Re_3 = 4.8 \cdot 10^6$ соответственно.

На рис. З представлены кривые зависимости ускорения от времени для комбинированной модели (обозначения те же). Из рисунка видно, что с ростом величины движущей силы увеличивается частота и амплитуда колебаний значений ускорения. При этом характер возникновения этих колебаний принципиально не меняется и ни в одном случае величина ускорения не принимает отрицательных значений. В работе [5] показано, что для тел подобной формы около 90% поверхности тела имеют безотрывное обтекание.

Для шара картина изменения скорости его дви-

=	-	
Вид объекта исследования	Вес в воздухе (H)	Вес в воде (H)
Комбинированная модель	8.102	2.714
Комбинированная модель	10.780	5.378
Комбинированная модель	13.437	8.051
Шар	1.673	0.568
Шар	2.229	1.123
Шар	2.769	1.664
Шар	3.348	2.242
Плоская пластина	0.893	0.572
Плоская пластина	1.774	1.140
Плоская пластина	4.028	3.516

Табл. 1. Весовые характеристики объектов исследования

Рис. 3. Зависимость ускорения комбинированного тела вращения от времени

жения совершенно другая. Из графика, приведенного на рис. 2, видно, что кривые 4 и 5, отвечающие значениям движущей силы $0.5 \cdot P_o$ и P_o соответственно, демонстрируют достижение движущимся шаром состояния с установившейся скоростью движения $V_{\rm ycr}$ с небольшими колебаниями ее значений. Числа Рейнольдса, при которых монотонно меняющееся ускорение приобретает колебательный характер, равны $Re_4 = 4.5 \cdot 10^5$ и $Re_5 = 7.2 \cdot 10^5$ соответственно и отвечают области кризиса сопротивления [8]. Характер движения шара резко меняется при увеличении движущей силы до значений 1.5 · Po и 2 · Po (кривые 6 и 7 соответственно). Его скорость быстро возрастает до некоторого максимального значения, а затем резко падает, приближаясь к значению V_{уст}. Соответствующие числа Рейнольдса равны $Re_6 = 1.2 \cdot 10^6$ и $Re_7 = 1.3 \cdot 10^6$, т. е. и в этом случае присутствует закризисное обтекание. Особенностью графиков ускорения шара является и то, что во всех случаях наблюдаются не только положительные значения ускорения, но и отрицательные (рис. 4).

Для пластин кривые 8, 9 и 10 на рис. 2 демонстрируют возможность достижения состояния с установившейся скоростью движения V_{vcт} но с иными особенностями: в отличие от шара, пластина на начальном этапе движения демонстрирует монотонное изменение скорости и ускорения до некоторого, характерного только для данной пластины, значения, и лишь затем начинает проявляться колебательный характер изменений скорости и ускорения (рис. 5). Так как нижняя граница критического числа Рейнольдса для идеально гладкой пластины составляет $Re_{\rm kp} = 3.2 \cdot 10^5 [8]$, а для данных пластин ускорение приобретает колебательный характер при значениях $Re_8 = 5.4 \cdot 10^5$, $Re_9 = 8.8 \cdot 10^5$ и $Re_{10} = 1.2 \cdot 10^6$ соответственно, то в этих случаях обтекание поверхности пластин является смешанным.

ЗАКЛЮ ЧЕНИЕ

Полученные результаты свидетельствуют о том, что для всех объектов исследования на неко-

Рис. 4. Зависимость ускорения шара от времени

тором этапе движения монотонное изменение во времени скорости и ускорения приобретало колебательный характер, что не отражено в работе [9]. Наблюдается не только увеличение частоты колебаний значений ускорения, но и рост их амплитуды. Отчетливо видно, что характер изменения скорости и ускорения, например, шара не повторяет характер изменения скорости и ускорения комбинированного тела, при этом ни тот, ни другой не повторяют характер изменения скорости и ускорения плоской пластины. Если принять, что колебательный характер изменения характеристик движения объектов исследования связан с процессом вихреобразования и формирования спутной струи, то можно заключить, что каждое движущееся тело имеет свой собственный, отличный от любого другого, режим перехода из одного состояния с установившейся скоростью V_{уст}, движения к другому, имеющему скорость V_{уст2}, а коэффициент сопротивления тела С_х определяется не только критериями Рейнольдса Re, Фруда Fr и безразмерного ускорения N_w , но и Струхаля Sh [4, 7]. Детальное знание таких особенностей позволит прогнозировать гидродинамические свойства тел естественного происхождения и технических устройств, а так же под-

Рис. 5. Зависимость ускорения плоской пластины от времени

твердит, что предыстория течения на этапе перехода из состояния с V_{ycr_1} в состояние с V_{ycr_2} имеет определяющее влияние на характер обтекания тела.

- 1. Белоусов А. Г. Нестационарное движение тел в воде // Бионика.- 1998.- N 27-28.- С. 100-103.
- Васильев А. С., Ильичев А. Ф., Михеев Г. Н. Некоторые аспекты гидродинамического сопротивления рыб и их моделей // Бионика. – 1985. – N 19. – С. 50– 56.
- Войткунский Я. Н., Фаддеев Ю. И. Некоторые проблемы технической гидробионики // Бионика.– 1976.– N 10.– С. 21–26.
- Гиневский Ф. С., Федяевский К. К. Некоторые закономерности при неустановившемся поступательном движении тел в вязкой жидкости // Изв. АН СССР, ОТН, Механика и машиностроение.- 1959.-N 3.- С. 207-209.
- Журава В. М., Фаддеев Ю. И. К вопросу о влиянии нестационарности поступательного движения гидробионтов на сопротивление трения // Бионика.-1973.- N 7.- С. 56-59.
- Савченко Ю. Н., Незнамов В. Н. Об одном нестационарном режиме движения животных // Бионика.-1976.- N 10.- С. 53-58.
- Шебалов А. Н. Некоторые вопросы влияния нестационарности на "механизмы" образования сопротивления // Бионика.– 1963.– N 3.– С. 61–65.
- 8. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1969. – 472 с.
- Thurston S., Jones R. D. Experimental Model Stadies of Non-Newtonian Soluble Coatings for Drag Raduction // J. Aircraft.- 1965.- 2, N 2.- P. 122-126.