УДК 626.862.35.32.01

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ВОЗДЕЙСТВИЯ ВИБРАЦИИ НА ПРИТОК К СКВАЖИНЕ В НАПОРНОМ ПЛАСТЕ

Н. Г. БУГАЙ, А. И. КРИВОНОГ, В. Л. ФРИДРИХСОН

Институт гидромеханики НАН Украины, Киев

Получено 01.11.2001

Приведены результаты модельных экспериментальных исследований влияния вибрации на приток воды к скважине из напорного пласта и приближенное аналитическое решение исследованных моделей. Показано, что вибрация не влияет непосредственно на приток воды к скважине, однако в напорном слое возникают дополнительное вибрационное поровое давление и вибрационный расход, величина которых зависит от частоты и силы вибрации. Последние могут способствовать раскольматации придренной зоны скважины и таким образом влиять на ее дебит.

Наведені результати модельних експериментальних досліджень впливу вібрації на приплив води до свердловини з напорного шару і наближене аналітичне рішення досліджених моделей. Показано, що вібрація не впливає безпосередньо на приплив води до свердловини, однак в напірному шарі виникають додатковий вібраційний поровий тиск і вібраційна витрата, величина яких залежить від частоти і сили вібрації. Останні можуть впливати на розкольматацію грунту біля свердловини і таким чином впливати на її дебіт.

The outcomes of model experimental researches of influencing of chattering on a water inflow to well from a pressure head seam and approximated analytical solution of investigated models are adduced. Is rotined, that the chattering does not influence directly a water inflow to well, however, in a pressure head stratum arise padding vibrational pore stress and vibrational consumption, the value which one depends on frequency and force of chattering. Last can promote colmatage about drain of a zone of well and thus influence its production rate.

введение

1. МОДЕЛЬ

Исследования последних лет показали [1–6], что вибрационные колебания на поверхности грунта вблизи скважины приводят к увеличению притока газа и нефти. Однозначного объяснения этому явлению пока нет.

Физически сила вибрации вызывает колебания системы малопроницаемая грунтовая пригрузка хорошо проницаемый напорный слой грунта, из которого отбирается жидкость, что должно привести к возникновению в напорном слое дополнительно вибрационного расхода, вибрационной скорости фильтрации и вибрационного порового давления. Все эти величины можно рассматривать как пульсацию скорости и давления, которые будут накладываться на установившийся фильтрационный поток в напорном слое при работе скважины. Пульсация скорости фильтрации и давления за счет вибрации в напорном слое может изменить приток к скважине и способствовать раскольматации прискважинной зоны. Учитывая это, основной целью экспериментальных исследований было определение притока, скорости фильтрации и давления в напорном слое в зависимости от силы и частоты вибрации на примере работы грунтовой модели притока к скважине.

На рис. 1 показана схема модели, которая включает следующие элементы. Фильтрующий слой речного днепровского песка 1, моделирующий напорный водоносный пласт, пригружен слоем тяжелого суглинка 2, коэффициент фильтрации которого $K_{\Phi} \approx 0, 1$ м/сут. Модель устроена в металлическом баке диаметром 1,4 м и высотой 0,9 м. Слой суглинка в одном случае (модель 1) укладывается непосредственно в бак, в другом (модель 2) – в специальный металлический каркас диаметром 1,2 м и высотой 0,75 м. Для подачи воды в слой песка устроен кольцевой дренаж 3 из витой поливинилхлоридной трубы диаметром 100 мм, защищенной от заиления волокнистым фильтром из стеклохолста в два слоя. Отбор воды из напорного пласта производится через скважину 4 диаметром 70 мм и бачок 5, уровень воды в котором H_2 выше кровли пласта. Вода в дренаж 3 подается из напорного бачка 6 при напоре Н₁. Для измерения давления воды в слое песка установлены пьезометры П₁, ..., П₅ и мембранные тензометрические датчики Д₁, ..., Д₄. Для измерения осадки песчаного слоя использованы часовые прогибомеры ЧП 1, ЧΠ 2.

На поверхности пригрузки 2 установлен специальный инерционный вибратор 7 с изменяемой частотой и силой вибрации. Вибратор закреплен на

Рис. 1. Схема экспериментальной модели (модель 2): П1 – пьезометры; Д – датчики порового давления; ЧП – часовой прогибомер

круглой металлической плите диаметром 0,7 м и толщиной 25 мм. Общая масса вибратора 240 кг. С помощью рычажной системы вибратор может пригружаться, чтобы исключить отрыв плиты вибратора от грунта пригрузки. На рис. 2 показана схема вибратора, разработанного и изготовленного авторами статьи. Вибрация создается с помощью дебалансов, закрепленных на дисках, которые вращаются в противоположные стороны. На каждой из двух осей вибратора закреплено по два дебаланса. Как видно из рис. 2, сила вибрации F_в направлена в вертикальном направлении и изменяется по синусоидальному закону:

$$F_{\rm\scriptscriptstyle B} = \frac{A_0}{2} \cdot \sin \omega t, \qquad (1)$$

где A_0 – амплитуда силы вибрации; ω – угловая скорость, $\omega = 2\pi N$; N – количество оборотов в секунду; t – время. Максимальное значение силы вибрации определяем по зависимости

$$\frac{A_0}{2} = 4 \cdot m \cdot \omega^2 \cdot r, \qquad (2)$$

где *m* – масса дебаланса; *r* – расстояние от центра вала до центра тяжести дебаланса. Всего было изготовлено семь типов дебалансов, которые отличались толщиной (от 2 мм до 70 мм) и массой. Таким образом, изменяя количество оборотов вибрации и устанавливая различные дебалансы, можно регулировать частоту и силу вибрации. Практически изготовленный вибратор позволяет регулировать частоту вибрации до 16 Гц и силу вибрации до 3000 Н.

2. АНАЛИТИЧЕСКИЕ ИССЛЕДОВАНИЯ

Силе вибрации $F_{\rm B}$ будут противодействовать следующие силы: инерционное сопротивление грунтовой пригрузки вместе с вибратором, инерционное сопротивление воды, заполняющей песок, упругое сопротивление слоя песка и сила фильтрационного противодавления в слое песка, возникающее при перемещении f кровли. Рассматривая грунтовую пригрузку как абсолютно жесткое тело, а фильтрационное противодавление, вызванное вибрацией, как демпфер, дифференциальное уравнение колебаний системы имеет следующий вид [7]:

$$af'' + bf' + cf = \frac{A_0}{2} \cdot \sin \omega t.$$
(3)

Общее решение уравнения (3) будет:

$$f = e^{-ht} \left(C_1 \cdot \sin k_* t + C_2 \cdot \cos k_* t \right) + \frac{A_0 \cdot \sin(\omega t - \gamma)}{2a\sqrt{(k^2 - \omega^2) + 4h^2 \cdot \omega^2}},$$
(4)

Бугай Н.Г., Кривоног А.И., Фридрихсон В.Л.

Рис. 2. Схема вибратора:

1 – опорная плита; 2 – вибратор; 3 – электродвигатель; 4 – дебалансы; 5 – ременная передача

где $h = b/2a; k^2 = c/a; C_1$ и C_2 – постоянные интегрирования.

Первая часть решения (4) представляет собой колебания системы с частотой $k_* = \sqrt{k^2 - h^2}$, которые быстро затухают и становятся несущественными. Основное значение имеет вторая стационарная часть решения, поэтому

$$f = \frac{A_0}{2a\sqrt{(k^2 - \omega^2) + 4h^2 \cdot \omega^2}} \cdot \sin(\omega t - \gamma), \quad (5)$$

где γ – отставание фазы перемещения f от фазы силы $F_{\rm B},$ которое определяется выражением

$$\gamma = \operatorname{arctg} \frac{2h \cdot \omega}{k^2 - \omega^2}.$$
 (6)

При $\omega = k$ наступает резонансное состояние системы.

Скорость v = f' и ускорение v' = f'' перемещения стационарных колебаний определяем после дифференцирования уравнения (5):

$$v = f' = \frac{A_0 \cdot \omega}{2a\sqrt{\left(\frac{c}{a} - \omega^2\right)^2 + \frac{b^2 \cdot \omega^2}{a^2}}} \cdot \cos(\omega t - \gamma), \quad (7)$$

$$v' = f'' = \frac{A_0 \cdot \omega^2}{2a\sqrt{(\frac{c}{a} - \omega^2)^2 + \frac{b^2 \cdot \omega^2}{a^2}}} \cdot \sin(\omega t - \gamma), \quad (8)$$

$$v_{max} = \frac{A_0 \cdot \omega}{2a\sqrt{\left(\frac{c}{a} - \omega^2\right)^2 + \frac{b^2 \cdot \omega^2}{a^2}}}.$$
 (9)

Учитывая выражение (6), из уравнения (9) можно получить

$v_{max} = \frac{A_0 \cdot \omega \cdot \cos \gamma}{2a(k^2 - \omega^2)}.$ (10)

При $k^2 >> \omega^2$

$$v_{max} = \frac{A_0 \cdot \omega \cdot \cos \gamma}{2c}.$$
 (11)

Для v_{max} в [8] приведена иная зависимость:

$$v_{max} = \frac{A_0 \cdot \cos \gamma}{2b}.$$
 (12)

Коэффициент $a = a_1 + a_2$, где a_1 представляет собой приведенную массу грунтовой пригрузки 2 вместе с вибратором и пригрузкой вибратора с учетом гидростатического (при $H_1 = H_2$) или гидродинамического (при $H_1 > H_2$) взвешивания.

При $H_1 = H_2$

$$a_{1} = m_{\rm B} + \frac{\pi D^{2}}{4} H_{\rm rp} \cdot \gamma_{\rm rp} - \frac{\pi D^{2} \cdot \gamma_{\rm B}}{4} (H_{2} - \delta); \quad (13)$$

при $H_1 > H_2$

$$a_{1} = m_{\rm B} + \frac{\pi D^{2}}{4} H_{\rm rp} \cdot \gamma_{\rm rp} - \gamma_{\rm B} \left[\frac{\pi D^{2}}{4} (H_{2} - \delta) + \frac{2\pi (H_{1} - H_{2})}{\ln \frac{R}{r_{\rm cKB}}} \left(\frac{R^{2}}{2} \cdot \ln \frac{R}{r_{\rm cKB}} - \frac{R^{2}}{4} + \frac{r_{\rm cKB}^{2}}{4} \right) \right].$$
(14)

Приведенная масса воды, заполняющей поры слоя песка, определяется как

$$a_2 = \pi \gamma_{\scriptscriptstyle B} \left(\frac{2R^3}{3} - R^2 \cdot r_{\scriptscriptstyle CKB} \right). \tag{15}$$

Бугай Н.Г., Кривоног А.И., Фридрихсон В.Л.

Коэффициент *с* входит в уравнение (3) в член *cf* и представляет собой силу упругого сопротивления вертикального слоя песка:

$$c = \frac{\pi D^2}{4\delta} E_n. \tag{16}$$

Определение коэффициента b для исследуемых моделей является особенностью решения. В уравнении (3) член bf' представляет собой силу фильтрационного противодавления в слое песка при перемещении кровли пласта вследствие вибрации. Принимая скорость перемещения v кровли на поверхности слоя песка как инфильтрацию интенсивностью v, решаем задачу о движении жидкости в слое с переменным расходом. В результате находим вибрационный расход $q_{\rm B}$, вибрационное давление $h_{\rm B}$ и коэффициент b.

Для случая, когда в центре кругового пласта нет скважины и отток возможен только на периферию пласта:

$$q_{\scriptscriptstyle\rm B} = \pi \cdot r^2 v, \qquad (17)$$

$$h_{\scriptscriptstyle \rm B} = \frac{v}{4K_{\Phi} \cdot \delta} (R^2 - r^2), \qquad (18)$$

$$b = \frac{\pi \gamma_{\rm B} \cdot g \cdot R^4}{8K_{\Phi} \cdot \delta}.$$
 (19)

Для случая, когда внешние границы пласта водонепроницаемые и отток возможен только в центре пласта (модель 1):

$$q_{\rm B} = \pi (R^2 - r^2) \cdot v, \qquad (20)$$

$$h_{\rm B} = \frac{v}{2K_{\rm \Phi} \cdot \delta} \left(R^2 \cdot \ln \frac{r}{r_{\rm \scriptscriptstyle CKB}} - \frac{r^2}{2} + \frac{r_{\rm \scriptscriptstyle CKB}^2}{2} \right), \quad (21)$$

$$b = \frac{\pi \cdot \gamma_{\rm B} \cdot g}{K_{\Phi} \cdot \delta} \left(\frac{R^2 \cdot r_{\rm cKB}^2}{2} - \frac{R^4}{4} - \frac{r_{\rm cKB}^4}{8} + \frac{R^4}{2} ln \frac{R}{r_{\rm cKB}} \right).$$
(22)

Для случая, когда отток возможен в центр пласта и на периферию (модель 2), фильтрационный поток разделяется на некотором расстоянии r_1 от центра скважины на два потока:

при $r_1 > r > r_{ckb}$ – отток в скважину,

$$q_{\rm B} = \pi (r_1^2 - r^2) v, \qquad (23)$$

$$h_{\rm B} = \frac{v}{2K_{\Phi} \cdot \delta} \left(\frac{r_{\rm {\tiny CKB}}^2}{2} + r_1^2 \cdot \ln \frac{r}{r_{\rm {\tiny CKB}}} - \frac{r^2}{2} \right), \qquad (24)$$

при $R > r > r_1$ – отток на периферию пласта,

$$q_{\rm\scriptscriptstyle B} = \pi (r^2 - r_1^2) v, \qquad (25)$$

$$h_{\rm B} = \frac{v}{2K_{\Phi} \cdot \delta} \left(\frac{R^2}{2} + r_1^2 \cdot \ln \frac{r}{R} - \frac{r^2}{2} \right), \qquad (26)$$

$$b = \frac{\pi \cdot \gamma_{\rm B} \cdot g}{K_{\Phi} \cdot \delta} \left(\frac{R^4}{8} - \frac{r_{\rm c_{KB}}^4}{8} - \frac{R^2 \cdot r_1^2}{2} + \frac{r_1^2 \cdot r_{\rm c_{KB}}^2}{2} + \frac{r_1^2 \cdot r_{\rm c_{KB}}^2}{2} + \frac{r_1^4}{2} ln \frac{R}{r_{\rm curr}} \right), \qquad (27)$$

$$r_1 = \sqrt{\frac{R^2 - r_{\rm ckB}^2}{2lnR/r_{\rm ckB}}}.$$
 (28)

Отметим, что значение r_1 определялось без учета дополнительного фильтрационного сопротивления при выходе потока из слоя песка в кольцевое пространство между стенкой бака и моделью. Как будет показано ниже, при анализе результатов экспериментов это сопротивление необходимо учитывать.

В формулах (13)–(28) приняты следующие обозначения: $m_{\rm B}$ – масса вибратора; D = 2R – диаметр модели; $r_{\rm ckB}$ – радиус скважины; $H_{\rm rp}$ – толщина слоя грунтовой пригрузки; δ – толщина слоя песка; E_n – модуль упругости водонасыщенного песка; $\gamma_{\rm rp}$ – плотность грунта пригрузки; $\gamma_{\rm B}$ – плотность воды; g – ускорение силы тяжести.

Таким образом, из приведенного решения видно, что при вибрации на поверхности малопроницаемой грунтовой пригрузки в напорном, более водопроницаемом слое песка возникают вибрационные расход q_в и давление h_в, которые приводят к появлению пульсационной составляющей средней скорости в порах песка U_в и градиента $dU_{\rm B}/dr$:

$$U_{\rm\scriptscriptstyle B} = \frac{q_{\rm\scriptscriptstyle B}}{2\pi r \cdot \delta \cdot n}.\tag{29}$$

Наибольшие значения $U_{\rm B}$ и $dU_{\rm B}/dr$ имеют вблизи скважины и могут нарушить равновесие массопереноса в порах при установившейся фильтрации. Это может привести к частичной раскольматации придренной зоны и увеличению притока к скважине. Во всяком случае, известно [9], что контактная устойчивость смежных слоев несвязных грунтов при пульсирующей фильтрации ухудшается за счет разрушения сводиков из частиц дренируемого грунта над порами защитного фильтра.

Рис. 3. Эксментальные (•) и расчетные зависимости $\Delta h_{\rm B}/A_0 = f(n) (a - r)$ и зависимости $Q = f(n, A_0) (д)$; модель 1

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Влияние вибрации на приток к скважине определялось непосредственно сопоставлением измеренных на моделях расходов при установившейся фильтрации и при наложении на этот поток вибрации. На рис. 3 для модели 1 и на рис. 4 для модели 2 приведены опытные значения притока к скважине Q в зависимости от частоты вибрации *п* и амплитуды силы вибрации A₀. Видно, что при n до 16 Гц и A_0 до 5740 Н приток к скважине практически не изменился. Можно только отметить незначительное, до 2% уменьшение притока к скважине в начальный период работы модели за счет некоторого уплотнения песка вследствие вибрации. Расшифровка осциллограмм датчиков порового давления показывает, что при вибрации в слое песка возникает вибрационное давление $h_{\rm B}$, величина которого зависит от частоты вибрации n, силы вибрации и характеристик модели. В табл. 1 приведены опытные данные для моделей 1 и 2. На рис. 3 для модели 1 и на рис. 4 для модели 2 показаны опытные зависимости $\Delta h_{\rm B}/A_0 = f(n)$ для всех четырех датчиков давления, где $\Delta h_{\rm B}$ – амплитуда колебания $h_{\rm B}$. Видно, что между параметром $\Delta h_{\rm B}/A_0$ и частотой вибрации n имеется очевидная связь: с увеличением частоты $\Delta h_{\rm B}/A_0$ резко уменьшается.

Анализ опытных данных показал, что фильтрационный поток в слое песка для модели 2 разделяется на расстоянии $r_1 \approx 0,38$ м на два потока: к скважине и на периферию. По расчету по формуле (28) $r_1 = 0,25$ м. Расхождение между опытным и расчетным значением r_1 связано, как указывалось выше, с тем, что при теоретическом решении не учитывалось дополнительное сопротивление на

Рис. 4. Эксментальные (•) и расчетные зависимости $\Delta h_{\rm B}/A_0 = f(n) (a - r)$ и зависимости $Q = f(n, A_0)$ (д); модель 2

выход фильтрационного потока в кольцевое пространство между моделью и стенкой бака. Физически это означает удлинение путей фильтрации. Поэтому при расчетах b, $q_{\rm B}$ и $h_{\rm B}$ для модели 2 необходимо принимать $r_1 = 0.38$ м и R = 0.98 м. Для сравнения опытных значений $\Delta h_{\rm B}/A_0$ с расчетными были проведены соответствующие вычисления по приведенным выше формулам.

Расчетное значение амплитуды $\Delta h_{\rm B} = 2h_{\rm B}$ при $v = v_{max}$ проводили для каждого датчика, принимая при расчете r = 0,145 м для D_1 , r = 0,265 м для D_2 , r = 0,385 м для D_3 и r = 0,515 м для D_4 . Результаты вычислений приведены в табл. 2 и показаны на рис. 3 и 4. В табл. 2 помещены также максимальные расчетные значения $q_{\rm B}/A_0$, а в табл. 1 – максимальные расчетные значения $q_{\rm B}$ для опытов. Вычисление $q_{\rm B}$ проводилось при $r = r_{\rm ckB}$. Для модели 2 вычислялся отток в скважину по формуле

(23); $\Delta h_{\rm B}$ и $q_{\rm B}$ вычислялись при v_{max} из соотношений (11) и (12).

Из табл. 1 видно, что максимальное значение $q_{\rm B}$ по сравнению с Q при установившейся фильтрации составляет не более 0,5% при вычислении v_{max} по формуле (12) и не более 10% при вычислении v_{max} по формуле (11). Кроме того, за период колебания $q_{\rm B}$ изменяется от $+q_{\rm Bmax}$ до $-q_{\rm Bmax}$ и за время измерения расхода из скважины объемным способом многократно уменьшается и увеличивается на $q_{\rm Bmax}$ и тем самым нейтрализует влияние вибрации на приток к скважине. Поэтому можно утверждать, что вибрация не влияет на приток к скважине, что и было отмечено в опытах.

Сопоставляя опытные и расчетные значения $\Delta h_{\rm B}$ (рис. 3 и 4), видим, что при вычислении v_{max} по формуле (12) имеется качественное и некоторое количественное совпадение с экспериментом.

Характеристика	n,	A_0 ,	Опытные значения				Расчетные значения,						
модели	Γц	Н	$\Delta h_{\scriptscriptstyle m B}$, мм в. ст.				$q_{\scriptscriptstyle \rm B},~{ m cm}^3/{ m c},~{ m пр}$ и						
			Д1	Д2	Д3	Д4	<i>v_{max}</i> по (11)	<i>v_{max}</i> по (12)					
Модель 1													
$H_1 = 0,823$ м	7,8	2800	0,23	2,0	1,7	2,7	$5,\!60$	0,11					
$H_2 = 0,354$ м													
$Q = 21 \text{ см}^3/\text{с}$	1,6	160	$0,\!36$	1,3	1,5	1,9	0,32	0,03					
R = 0,7м													
$r_{\rm ck b} = 0,035$ m	3,5	600	$0,\!39$	1,3	1,5	2,1	1,20	0,05					
$\delta = 0,298$ м													
$H_{\rm rp} = 0,75$ м	4,5	920	$0,\!32$	0,9	1,0	1,3	1,84	0,06					
$\gamma_{\rm rp} = 1620 \ {\rm kr}/{ m m}^3$													
$K_{\Phi} = 11, 8 \cdot 10^{-5}$ м/с	6,5	1960	0,36	1,3	1,5	1,7	$1,\!2$	0, 10					
$\gamma_{\rm b} = 1000 \ {\rm kg}/{\rm m}^3$													
$m_{\rm b} = 800 \ {\rm kg}$	2,2	216	0,77	1,9	2,2	3,2	0,43	0,03					
$E_n = 44 \cdot 10^6 \text{ H/m}^2$	4,8	1074	0,39	0,9	1,4	1,7	2,15	0,06					
Модель 2													
$H_1 = 0,85$ м	2,0	180	0,40	1,9	2,2	1,6	0,29	0,04					
$H_2 = 0,28$ м	3,1	480	$0,\!40$	1,6	2,5	1,2	0,77	0,08					
$Q = 23, 9 \text{ cm}^3/\text{c}$	4,1	780	$0,\!40$	2,6	3,3	1,6	1,25	0,09					
R = 0, 6 м	6,1	1720	$0,\!40$	1,6	2,7	1,1	2,74	0,12					
$r_{\rm ckb} = 0,035$ м	7,8	2800	0,80	2,4	4,1	1,4	4,5	0,15					
$\delta = 0,224$ м	10,0	4600	1,00	1,6	2,8	1,1	$7,\!35$	0,23					
$H_{\rm rp} = 0,75$ м	11,7	6320	1,20	2,4	8,2	2,2	1,01	0,25					
$\gamma_{ m rp} = 1680 \ { m kr}/{ m m}^3$	8,1	780	$0,\!40$	1,6	1,9	1,3	1,23	0,05					
$K_{\Phi} = 6,9 \cdot 10^{-5}$ м/с	10,0	1200	$0,\!30$	1,7	1,4	1,1	1,92	0,06					
$m_{\scriptscriptstyle \mathrm{B}}=740$ кг	13,3	2120	$0,\!60$	3,2	1,5	1,2	3,4	0,08					
$E_n = 44 \cdot 10^6 \text{ H/m}^2$	16,5	3260	$0,\!40$	2,1	5,5	1,5	5,2	0, 10					
$H_1 = H_2 = 0,\!682$ м	2,2	220	0,60	2,3	1,6	0,9	0,35	0,05					
	4,2	820	1,30	2,9	3,0	1,5	1,31	0,10					
	6,3	1840	0,80	2,3	2,4	1,3	2,95	0,13					
	11,3	5880	1,40	1,8	3,4	0,9	9,45	0,23					

Табл. 1. Опытные значения $\frac{\Delta h_{\rm B}}{A_0}$ и расчетные $\frac{q_1}{A_0}$ для опытов

При расчете v_{max} по формуле (11) $\Delta h_{\rm B}/A_0$ почти не зависит от n, а абсолютное значение $\Delta h_{\rm B}/A_0$ значительно больше, чем экспериментальное. Отметим также, что вычисленные значения $\Delta h_{\rm B}$ и $q_{\rm B}$ при определении v_{max} по формулам (11) и (12) при n < 1 Гц близки между собой.

4. ЗАКЛЮЧЕНИЕ

Экспериментальные и аналитические исследования влияния вибрации на приток к скважине показали, что в напорном слое, из которого отбирается жидкость, возникают вибрационное давление $h_{\rm B}$ и вибрационный расход $q_{\rm B}$, которые накладываются на установившийся фильтрационный поток. Однако вследствие знакопеременного характера $q_{\rm B}$ приток к скважине практически не изменяется.

Вибрационный расход q_в приводит к появлению пульсационной составляющей скорости фильтрации в порах напорного слоя, что может нарушить равновесное состояние массопереноса вблизи скважины и привести к некоторой раскольматации прискважинной области и самого фильтра скважины. При низких частотах вибрации n < n1 Гц, значения $h_{\rm B}$ и $q_{\rm B}$ значительно больше, чем, например, при n = 3-5 Гц. Однако утверждать, что вибрация с более низкой частотой будет более эффективной, нельзя. В зависимости от свойств осадка в порах грунта напорного слоя превалирующим может оказаться процесс разжижения, а не механического разрушения осадка. В этом случае эффективным может оказаться более высокая частота пульсации скорости фильтрации.

Характеристика	n,	γ^{o}	$\cos\gamma$	$\frac{\Delta h_{\rm B}}{\Lambda}, \frac{\rm MM}{\rm II}, \qquad \qquad \frac{q_{\rm B}}{\Lambda} \cdot 10^{-3},$								
молели	Гп				$\frac{\Lambda_0}{cM^3}$ HDM							
модели	ιц				$\overline{\mathbf{c} \cdot \mathbf{H}}, \mathbf{H}$							
				Д1	Д2	Д3	Д4	$v_{max} \frac{\pi o(11)}{\pi o(12)}$				
		8		Моде	ль 1	1	1					
$H_1 = 0,823$ м	1	82°21′	$0,\!133$	$\frac{3,2\cdot 10^{-2}}{0,45\cdot 10^{-2}}$	$\frac{5, 1 \cdot 10^{-2}}{0, 7 \cdot 10^{-2}}$	$\frac{5,8\cdot10^{-2}}{0,8\cdot10^{-2}}$	$\frac{6, 3 \cdot 10^{-2}}{0, 87 \cdot 10^{-2}}$	$\frac{2,14}{0,29}$				
$H_2 = 0,354$ м	2	86° 19′	0,064	$\frac{3,0}{0,22}$	$\frac{4,9}{0,34}$	$\frac{5,6}{0,38}$	$\frac{6,1}{0,42}$	$\frac{2,06}{0,14}$				
$Q = 21 \ \mathrm{cm}^3/\mathrm{c}$	3	87°19′	0,047	$\frac{3,4}{0,16}$	$\frac{5,4}{0,25}$	$\frac{5,2}{0,28}$	$\frac{6,7}{0,31}$	$\frac{2,26}{0,10}$				
a = 2640 kg	5	88°29'	0,026	$\frac{3,1}{0,09}$	$\frac{5,0}{0,14}$	$\frac{5,20}{5,7}$	$\frac{6,2}{0,17}$	$\frac{2,08}{0.056}$				
$b = 2,62 \cdot 10^8 \text{ kg/c}$	10	89°15′	0,013	$\frac{3,1}{0,044}$	$\frac{5,0}{0.07}$	$\frac{5,7}{0.08}$	$\frac{6,2}{0.085}$	$\frac{2,08}{0.028}$				
$c = 2,23 \cdot 10^8 \text{ kg}/c^2$	15	89°32′	0,008	$\frac{2,9}{0,027}$	$\frac{4,7}{0.042}$	$\frac{5, 60}{5, 4}$	$\frac{5,8}{0.052}$	$\frac{1,92}{0,022}$				
$k^2 = 0,84 \cdot 10^5$	20	89°41′	0,005	$\frac{2,5}{0,017}$	$\frac{4,0}{0,026}$	$\frac{4,6}{0,02}$	$\frac{5,0}{0,032}$	$\frac{1,6}{0,011}$				
$h = 0.5 \cdot 10^5$				0,017	0,020	0,05	0,055	0,011				
				Моде	ль 2	I	1	I				
$H_1 = 0,85$ м	0,1	$23^{o}50'$	$0,\!915$	$\frac{0,86 \cdot 10^{-2}}{5 \cdot 10^{-2}}$	$\frac{1,18\cdot 10^{-2}}{6.8\cdot 10^{-2}}$	$\frac{1,28\cdot 10^{-2}}{7.4\cdot 10^{-2}}$	$\frac{1,19\cdot10^{-2}}{6.9\cdot10^{-2}}$	$\frac{1,5}{1,9}$				
$H_2 = 0,28$ м	0,5	65°30′	0,415	$\frac{1,95}{2,2}$	$\frac{2,68}{2,1}$	$\frac{2,9}{2,4}$	$\frac{2,7}{2,1}$	$\frac{3,3}{0,86}$				
$Q = 23, 9 \text{ cm}^3/\text{c}$	1	77°10′	0,222	$\frac{2,3}{2,07}$	$\frac{3,1}{2,86}$	3, 4 3, 1 1, 70	3, 1 3, 0 1, 67	$\frac{1,6}{2,45}$				
а = 1416 кг	2	83°30′	0.113	$\frac{1,2}{2,13}$	1,63 2,92	$\frac{1,79}{3,16}$	1,67 2,94 $\overline{2,94}$	0,45 $1,9$				
1 1 1 108 /		050401	0.70	0,63 2,14	0,84 2,94	0,91 3,2	$\frac{0,85}{2,96}$	0,23 1,6				
$b = 1, 1 \cdot 10^{\circ} \text{ kr/c}$	3	85°40'	0,76	$\overline{0,42}$	$\overline{0,56}$	0, 61	$\overline{0,57}$	$\overline{0,18}$				
$c=2,0\cdot10^8$ кг/с ²	5	87°25′	0,044	$\frac{2,07}{0,24}$	$\frac{2,84}{0,33}$	$\frac{3,09}{0,35}$	$\frac{2,85}{0,33}$	$\frac{1,6}{0,09}$				
$k^2 = 1, 4 \cdot 10^5$	10	88°42′	0,020	$\frac{1,9}{0,11}$	$\frac{2,68}{0,15}$	$\frac{2,8}{0,16}$	$\frac{2,6}{0,15}$	$\frac{1,4}{0,04}$				
$h = 0,49 \cdot 10^5$	15	89°08′	0,015	$\frac{2,12}{0,08}$	$\frac{2,9}{0,11}$	$\frac{3,16}{0,12}$	$\frac{2,92}{0,11}$	$\frac{1,6}{0,03}$				
	20	89°22′	0,012	$\frac{2,26}{0,066}$	$\frac{3,1}{\overline{0,09}}$	$\frac{3,36}{\overline{0,097}}$	$\frac{3,12}{0,09}$	$\frac{1,7}{0,025}$				

Табл. 2. Расчетные значения $\frac{\Delta h_{\scriptscriptstyle B}}{A_0}$ и $\frac{q_{\scriptscriptstyle B}}{A_0}$ для исследованных моделей

 Ф и.- з: и, ч.- е с.ские основы вибрационного воздействия на нефтяную залежь. Динамические задачи механики сплошной среды// Материалы докладов.- Краснодар, 1990.- С. 199-201.

 Николаевский В. И. Вибрации горных массивов и конечная нефтеотдача // МЖГ.- 1992.- N 5.-С. 110-119.

3. Осика Д. Г. Флюидный режим сейсмических актив-

Бугай Н.Г., Кривоног А.И., Фридрихсон В.Л.

ных областей.- М.: Наука, 1981.- 203 с.

- 4. Кричлоу Г. Б. Современная разработка нефтяных месторождений проблема моделирования. М.: Недра, 1979. 303 с.
- Николаевский В. И. Механизм воздействия на нефтеотдачу месторождений // ДАН СССР.– 1989.– Т. 307, N 3.– С. 570–575.
- Ляхтер В. М., Дидух В. И. Движение водонасыщенной грунтовой среды при сейсмических воздейст-

виях//Труды коорд. совещ. по гидротехнике.- М.: Энергия, 1973.- С. 111-130.

- 7. *Пановко Я. Г.* Введение в теорию механических колебаний.- М.: Наука, 1971.- 239 с.
- Ниtte Справочник для инженеров, Т. 1.– М.: ОНТИ, 1936.– 914 с.
- 9. Беляшевский Н. Н., Бугай Н. Г. Контактная устойчивость обратных фильтров под дренированным креплением с учетом пульсации давления // Гидротехническое строительство.- 1964.- N 3.- С. 36-38.