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In this article, a general form of pitch-plane model for supercavitating vehicle dynamics is presented and used to study

vehicle maneuvers. Vehicle motions into and out of the cavity are also considered and this allows for modeling of
damping-force like components encountered during planing. The non-steady nature of the planing formulation allows for
appropriate treatment of transient vehicle to cavity interactions. Since the vehicle planes on a cavity that is generated

by previous cavitator positions, the memory effects play an important role in the model development. Unlike previous
models, which are primarily intended for studies of vehicle motions in steady horizontal travel, the current form of

the model makes it possible to evaluate transient maneuvers that may deviate considerably from straight and level
trajectories. A numerical optimal-control approach is utilized to generate control inputs for maneuvers intended to reach

a particular location. Comparisons with previous approaches are made and results obtained for maneuvering are included
in this work.
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В статтi описано узагальнену математичну модель динамiки суперкавiтуючого апарату у вертикальнiй площинi,
яка використовується для дослiдження маневреностi апарата. Для розрахунку компонент демпфipуючої сили

при глiсуваннi розглянуто рух апарата усерединi i зовнi каверни. При розгляданнi взаємодiї апарата з каверною
враховується нестацiонарна природа глiсування i ефект пам’ятi каверни. На вiдмiну вiд попереднiх математичних
моделей, якi призначались в основному для вивчення стацiонарного горизонтального руху апаратiв, запропонована

модель дозволяє розглядати маневри апарата з суттєвим вiдхиленням вiд прямолiнiйних траекторiй. Для генерацiї
керуючих сигналiв для маневрiв, що призначенi для досягнення заданого положення, застосовано чисельнi методи

оптимального управлiння. Також у роботi дано порiвняння з попереднiми пiдходами i наведено результати
розрахункiв маневрування суперкавiтуючого апарата.

КЛЮЧОВI СЛОВА: cуперкавiтуючий апарат, динамiка, маневрування, система з запiзнюванням, оптимальне

управлiння

В статье описана обобщенная математическая модель динамиики суперкавитирующего аппарата в вертикальной
плоскости, которая используется для исследования маневренности аппарата. Для расчета компонент демпфи-

рующей силы при глиссировании рассмотрено движение аппарата внутри и вне каверны. При рассмотрении
взаимодействия аппарата с каверной учитывается нестационарная природа глиссирования и эффект памяти

каверны. В отличие от предыдущих математических моделей, которые предназначались в основном для изучения
стационарного горизонтального движения аппаратов, предлагаемая модель позволяет рассматривать маневры
аппарата с существенным отклонением от прямолинейных траекторий. Для генерации управляющих сигналов для

маневров, предназначенных для достижения заданного положения, применены численные методы оптимального
управления. Также в работе дано сравнение с предыдущими подходами и приведены результаты расчетов манев-

рирования суперкавитирующего аппарата.

КЛЮЧЕВЫЕ СЛОВА: cуперкавитирующий аппарат, динамика, маневрирование, система с запаздыванием, опти-
мальное управление

Nomenclature

L Length of vehicle (m)
σ Cavitation number
α Immersion angle (rad)
δe Fin deflection angle (rad)
δc Cavitator deflection angle (rad)
CD Coefficient of drag
RC Cavity radius (m)
V Vehicle total speed (m/s)
z Depth (m)
w Transverse speed (m/s)
θ Pitch angle (rad)

q Pitch rate (rad/s)
xτ Delayed version of x(t): x(t − τ)
Rn Cavitator radius (m)
R Body radius (m)
m Vehicle mass (kg)
n Fin effectiveness
Cx0 Cavitator lift coefficient
g Acceleration due to gravity (m/s2)

INTRODUCTION

Supercavitation, which can occur during the moti-
ons of high-speed underwater vehicles, is defined
as a state wherein a gaseous bubble completely
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Fig. 1. Illustration of a supercavitating vehicle

envelops the vehicle body, as illustrated in Fig. 1. The
advantage of such form of locomotion is increased
speed due to reduced skin friction drag. The gas
bubble can be either formed through vaporous
cavitation generated by the high-speed propulsi-
on alone or aided by forced ventilation. Spurred
by the fundamental efforts of Logvinovich [1, 2],
considerable progress has been made in modeling
complex cavity dynamics. However, the development
of accurate models that describe the cavity shape,
growth, and collapse is still an open area of
research. Vehicle-cavity interactions also pose si-
gnificant challenges to modeling and analysis of
system dynamics and control. These interactions are
characterized by strong non-linear planing forces. Si-
nce the unwetted vehicle regions do not generates
buoyancy forces, these strong interaction forces can
arise even during straight and level flight. Due to
the intermittent contact with the cavity surface, vehi-
cle stability needs to be carefully addressed. Cavity
memory effects also add additional complexity to the
system. The cavity surface is generated as the cavi-
tator at the front of the vehicle moves through the
fluid. Cavity contact or planing generally occurs at
the rear of the vehicle, and the cavity planing surface
at this location is generated by previous cavitator
positions. Therefore, there is an associated time lapse
between when the cavity is created and when it affects
the planing forces. This time delay relates approxi-
mately to the amount of time it takes the vehicle to
move one body length.

Several models have been proposed to study the
dynamics of supercavitating vehicles. A supercavi-
tating vehicle of the type considered here is shown in
Fig. 1. The hydrodynamic forces applied to the body
arise from the control surfaces (the cavitator and fi-
ns) and the planing forces that arise when the aft

of the body enters the water. Four-state rigid-body
models have been used to study pitch-plane dynamics
and stability in earlier studies [3 – 8]. A twelve-state
rigid-body model is presented in the work [9], and
models that reflect the effect of time delay have been
examined in the studies [10 – 12]. A numerical model
incorporating structural elasticity is presented in the
reference [13]. Trajectory optimization for supercavi-
tating vehicles is presented in recent studies [14,15].
In these efforts, time-delay effects are included, but
the resulting maneuvers do not utilize planing unlike
the current effort.

As mentioned earlier, there have been several
studies that have been pursued with the aim of
understanding the dynamics of supercavitating vehi-
cles [2, 3, 9]. Of particular relevance to this work,
stabilization, control, and maneuvering of supercavi-
tating vehicles have been studied from several poi-
nts of view in recent years [3, 6 – 9, 11]. Primary di-
fferences amongst these models can be summarized
in terms of the following features: i) cavity geometry
and dynamics and ii) the calculation of planing forces.
It is important to note that the results of such studies
hinge on the dynamic models used and assumptions
inherent in these models. An important aspect of the
modeling efforts is the computation of the planing
force. In almost all of the studies to date, an approach
similar to the one presented in [3] is utilized, in which
the planing force is assumed to be the result of fluid
transport into a spray sheet, and it is calculated based
on an extension of the Wagner planing theory [2].

To the best of the authors’ knowledge, in all of
the current existing research, cavity interaction forces
are calculated by utilizing an assumption of steady-
planing. With this approach, the cavity interaction
force experienced by the vehicle is estimated as the
force experienced by a vehicle body in steady plani-
ng along the cavity. The steady planing force allows
for computational ease, since the planing force is
only based on the geometric positions of the vehi-
cle and the cavity. The steady planing assumption is
useful when investigating stability or cases wherein
the motions do not deviate greatly from steady state.

Here, the authors present a model for vehicle
dynamics on the pitch-plane, and in this model
developing, the planing force modeling allows for
vehicle motions into or out of the cavity. Since this
model accounts for both the geometric positions as
well as vehicle speeds into the cavity, this approach
can be considered for incorporating the damping-
type effects associated with the planing force. These
damping-type effects are inherently missing from
steady planing formulations. Also, included in the
current model is a detailed treatment of the time-
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delay effect. The detailed cavity tracking along with
the new planing force model allows for consideration
of motions that may deviate greatly from steady-state
flight. Investigations into maneuvering are presented
by utilizing a numerical optimization approach for
generating control inputs for the defined maneuvers.
Homing maneuvers are presented, and contrary to
previous optimal control studies, the resulting vehi-
cle trajectories utilize planing for aggressive vehicle
maneuvers.

The rest of the paper is organized as follows.
In Section 1, the basic pitch-plane dynamics model
is presented. In this section, the vehicle dynami-
cs model, cavity model, and planing force model
are developed and discussed. The inclusion of cavi-
ty delay effects are discussed in Section 2 along wi-
th simulation results obtained with the new model.
Details on the maneuvering scheme and associated
results obtained are covered in Section 3.

1. DIVE PLANE MODELING

The vehicle dynamics model used in this work is
based on a formulation presented in previous studi-
es [3, 5]. The vehicle motions of interest are in the
vertical plane or the pitch plane, which is defined by
using by the vehicle velocity vector and the vertical
axis. A set of equations of motion that can be used to
describe the vehicle dynamics are given by Eqs. (1)
and (2).








ż
ẇ
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Fig. 2. Coordinate system definition for system model
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In this representation, the system dynamics is
tracked by using four states, the vertical position
z, the transverse velocity w, the pitch angle θ, and
the pitch rate q. All of these states are considered
at the vehicle nose. The vehicle forward speed, V , is
assumed to be constant, and the transverse veloci-
ty, w, is taken about a moving coordinate system
that follows the vehicle and this velocity component
direction is always normal to the vehicle axis (see
Fig. 2). The vertical position z is taken about an
inertial reference frame, and the pitch angle θ is taken
about horizontal. The control inputs are the cavi-
tator and fin (elevator) actuation angles, δc and δe,
respectively. The forces generated by these control
surfaces are assumed to be linearly related to thei-
respective angles of attack, with the variable n
representing the ratio of the effectiveness of the fins to
the cavitator. With additional small angle assumpti-
ons, the equations of motion are linear with the
exception of the planing force, Fp, which has a non-
smooth description. A schematic of a supercavitati-
ng vehicle showing the various forces acting on the
vehicle body is shown in Fig. 3. The planing force,
the fin force, and the cavitator force are applied with
respect to the body reference frame. Further details
on the assumptions used in deriving the various vehi-
cle forces can be found in earlier studies (e.g., [3, 5]).
This set of equations are used as a basis in this work.

1.1. Logvinovich and cavity modeling
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Fig. 3. Forces acting on a supercavitating vehicle

The cavity shape is calculated by using the non-
dimensional cavitation number σ, which characterizes
the extent of cavitation. The cavitation number is
given by Eq. 3, where p∞ is the ambient pressure, pc

is the cavity pressure, ρ is the fluid density, and V is
the vehicle speed:

σ =
p∞ − pc

0.5ρV 2
. (3)

The cavity model is a semi-empirical closed-form
solution, which has been derived from a formulati-
on presented in Logvinovich’s work [1]. He presented
a formulation for the radius of a stationary cavity
section for a disc shaped cavitator as it expands and
contracts through time. This can be translated to
the spatial cavity profile with respect to the cavi-
tator for an axi-symmetric flow. The cavity profile
is generated by evaluating the cavity radius along
several points by using Eq. (4), where x represents
the length from the cavitator, and dc represents the
cavitator diameter, as shown in Fig. 4. Similarly the
cavity contraction/growth rate Ṙc can be determined
as shown in Eq. (5).

dmax = dc

√

0.82(1 + σ)/σ,

lm = dc/2(1.92/σ − 3),

k1 = 1.92(0.82(1 + σ)/σ)−
1
2 ,

k2 = (x · dc − dc)/lm,

Rc(x) = dmax/2
√

1 − (1 − k2
1)|1 − k2|2/0.85,(4)

Ṙc(x) =
(dmax/2)2

Rc(x)lm/V
(1 − k1)× (5)

×
1

0.85
(1 − k2)|1 − k2|

2(1−0.85)
0.85 .

1.2. Planing force modeling

The planing force model is based on a formulation
developed by Paryshev [16]. In this work, forces are

Fig. 4. Cavity model

defined for an expanding cylinder planing on a cyli-
ndrical cavity. The force per unit length is determi-
ned by evaluating the rate of change of momentum
of the fluid displaced by the planing cylinder. This is
shown in Eq. (6), where m∗

y represents the apparent
mass due to the planing, and m∗

R is the apparent
mass due to the expansion of the cylinder. For appli-
cation to supercavitating vehicles, since the radius of
the body does not change, the contribution of the
m∗

R can be ignored. The expression for the force can
then be expanded as shown in Eq. (7). If there is no
acceleration into or out of the fluid, the second term

involving
dVy

dt
can be dropped.

f =
d

dt

(

m∗

yVy + m∗

RṼR

)

, (6)

f =
dm∗

y

dt
Vy + m∗

y

dVy

dt
, (7)

m∗

y = πρr2h

(

2∆ + h

(∆ + h)2

)

, (8)

dm∗

y

dt
=

∂m∗

y

∂h

dh

dt
+

∂m∗

y

∂∆

d∆

dt
, (9)

dm∗

y

dh
= 2πr2ρ∆2(∆ + h)−3, (10)

FP =

∫

dm∗

y

dh
ḣ2ds. (11)

The expression for the apparent mass, m∗

y, is gi-
ven in Eq. (8), and this quantity is a function of the
immersion depth, h, and the gap, ∆, which is defi-
ned as the difference between the cavity radius and
the body radius. The rate of change of the apparent
mass m∗

y can then be described as shown in Eq. (9).
Since the radius of the body does not change, the gap

is constant with time; that is,
d∆

dt
= 0. The term,

dm∗

y

dh
, can be expressed as given in Eq. (10). Then,
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Fig. 5. Diagram of a cylinder planing on a cylindrical
surface

the total planing force can be obtained by integrati-
ng over the entire wetted area as shown in Eq. (11),
with Vy = ḣ.

For the supercavitating vehicle system, the planing
force can be integrated using Eq. (11) for any cavi-
ty shape and any cavity to body orientation. For the
case of a cylindrical body in steady planing along a
cylindrical cavity, the cavity axis is parallel to the
vehicle’s velocity direction and the planing force can
be represented as given by Eq. (12). For this case
of steady planing, the immersion rate ḣ along any
section of the cavity is expressed as V sin(α). The h0

term is the immersion depth at the aft of the vehi-
cle, as depicted in Fig. 5. The force centroid can also
be calculated to be as given in Eq. (13), where XP

is the distance measured from the aft of the vehi-
cle. The Paryshev planing force representation was
chosen, as it has been shown to provide a good fit to
experimental planing force data [17].

FP = πρr2V 2 sin(α) cos(α)

(

1 −
∆2

(h0 + ∆)2

)

, (12)

XP =

(

h0

tg (α)

) (

h0 + ∆

h0 + 2∆

)

. (13)

2. CONSIDERATION OF DELAY

The goal of this section is to explore the effects
of the system delay along with the steady planing
assumption. In much of the previous research, planing
force modeling assumes steady planing in order to si-

mplify the planing force calculations. For calculations
carried out with this assumption, any planing force
contributions due to the vehicle motions into or out
of the cavity are ignored. The planing force is then
just a function of the wetted area, which is fully defi-
ned by the position of the body relative to the cavity.
As the steady planing assumption leads to a purely
positional dependent description of planing force, wi-
th this assumption damping relationships in terms of
the vehicle’s motion are not incoporated.

The steady planing assumption pertains to how the
immersion rate term ḣ is handled. With steady plani-
ng, along any wetted section, there is still an immersi-
on rate that relates to the fact that the body is movi-
ng along the cavity axis at an angle. As discussed
in Section 1.2, for steady planing, the immersion
rate at any section of planing can be represented as
ḣ = Vt ·sin(α), where α is the angle between the body
and the cavity, and Vt in this expression represents
the total vehicle speed (Fig. 5). This immersion rate
term does not include any radial motions of the body
into the fluid.

Another important aspect with planing force
modeling is the location and position of the cavi-
ty. Cavity shape and location predictions can have
a significant effect on the resulting dynamics [8,
18, 19]. Two methods of modeling cavity position
and orientation (with respect to the vehicle body)
are shown in Fig. 6. At each instant in time as
the cavitator moves through the fluid, the cavi-
tator generates a vaporous cavity section that is
centered about its current position. Each cavity secti-
on expands and contracts in a direction perpendi-
cular to the cavitator velocity and each cavity secti-
on’s growth can be assumed to occur independently,
as proposed by Logvinovich [1]. With this, the cavity
at the rear of the vehicle (where planning occurs) is
actually generated by previous motions of the cavi-
tator through the fluid. As such, the appropriate
method of representing the cavity for planing is to
model the cavity centerline and orientation based on
previous cavitator position and velocity informati-
on. This is illustrated as the delayed approach in
Fig. 6. In modeling in this manner, the planing force is
dependent on the previous states and this complicates
integration of the system dynamics. To avoid this,
one common simplification is to use an instantaneous
approach, where the cavity position and orientation is
calculated based on the current cavitator position and
velocity direction. In this approach, one approximates
the cavity at the rear of the vehicle where planing
occurs as a cavity that would have been generated
if the cavitator had been steadily moving along its
current velocity direction. This approximation works
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well at capturing the dynamics of the system when
the vehicle speeds are high or when the vehicle path is
relatively straight. However this assumption may not
properly account for the cavity-vehicle interactions
when the vehicle speeds are low or when the vehicle
is maneuvering.

In this work, the authors present a model in whi-
ch they utilize both a delayed cavity approach to
generate cavity location and orientation for planing,
as well as a planing force formulation that includes
vehicle motions into or out of the fluid. For simpli-
fication and computational purposes, the cavity is
generated based on a single previous cavitator positi-
on and velocity direction. The time delay τ is chosen
as L/V seconds, which represents approximately the
time the vehicle takes to travel one body length. The
section of the cavity generated by this previous cavi-
tator orientation is used to define a cylindrical surface
for the planing force calculation.

Fig. 6. Two methods of modeling cavity position and
orientation

2.1. Description of immersion terms

A depiction of the cavity and vehicle centerlines
in a general position is shown in Fig. 7. Since the
cavity orientation is related to the previous position
and velocity direction of the cavitator, there may be
a positional offset between the cavity centerline and
the nose of the vehicle, as well as a relative angle
between the body centerline and the cavity centerline.
In this figure, the cavity center is located at a previous
nose position of (xτ , zτ ). The cavity expands in a
radial direction normal to the velocity direction at
the previous time, making the cavity axis parallel to
the delayed velocity direction. The cavity axis angle

Fig. 7. Cavity and vehicle centerlines for the delayed case

with respect to horizontal is denoted as θcτ and can
be expressed as in Eq. (14). In this expression, the
previous velocity direction can be defined by the sum
of the delayed velocity angle with respect to the body
(which can be calculated as tg −1(wτ/V )), and the
delayed body orientation with respect to horizontal
θτ .

θcτ = θτ − tg −1(wτ/V ). (14)

The relative position of the aft of the vehicle wi-
th respect to the cavity centerline is a function of
both a body translation and a body rotation. The
radial translation of the current position of the nose
with respect to the cavity centerline is expressed as b.
The relative angle between the current body centerli-
ne and the cavity centerline can be expressed as
θ(t)− θcτ , where θ(t) is the current body orientation
with respect to horizontal. The radial displacement
due to body rotation, c, can be expressed as given
in Eq. (15). The radial displacement of the body
centerline at the rear with respect to the cavity at
(xτ , zτ ) is b + c.

c = a · tg (θ(t) − θcτ ). (15)

The immersion depth h can then be described as in
Eq. (16), where ∆ = Rc−R. The immersion rate can
then be generated by differentiating Eq. (16), whi-
ch results in Eq. (17). The delay terms are treated
as having no dependence on time, since they are
only used to define an instantaneous stationary secti-
on of cavity on which the vehicle is planing. With
the exception of expansion and contraction along the
cavity radial direction, this instantaneous cavity does
not move or change. This treatment corresponds to
the physical phenomenon that the cavity is not movi-
ng in space once created; that is, it is simply expandi-
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Fig. 8. Parameters a and b in relation to cavity centerline

ng or contracting.

h = a · tg (θ(t) − θcτ ) + b − ∆, (16)

ḣ = a ·sec2(θ(t)−θcτ )·q(t)+ ȧ·tg (θ(t)−θcτ )+ ḃ−Ṙc.
(17)

The terms ȧ and ḃ represent the motion of the vehi-
cle nose relative to the fixed cavity. These terms are
the axial and radial components of the nose veloci-
ty with respect to the cavity axis. Returning to the
immersion rate expression of Eq. (17), the first term
relates to the rotation of the body into the cavity, the
second term relates to the fact that the body is movi-
ng through the cavity with a relative angle, the third
term relates to the rigid body motion of the vehicle
into the fluid, and the last term relates to the cavity
radial growth rate.

The parameters a and b can be solved by using
geometry. In Fig. 8 the orientation of a and b, along
with (xτ , zτ ) and (x(t), z(t)), are shown. The line
segment that joins (xτ , zτ ), and (x(t), z(t)), creates

an angle of θx = tg−1

(

zτ − z(t)

x(t) − xτ

)

with the hori-

zontal; it is noted that the numerator is zτ−z(t) since
z is positive in the downward direction. The relati-
ve angle that this segment creates with the cavity
axis is θcτ − θx. The parameters a and b can then be
expressed as provided in Eqs. (18)–(19). By expandi-
ng the sin and cos terms, the expressions can be si-
mplified to Eqs. (20)–(21). The rate of change can
then be expressed as in Eqs. (22-23). As described
earlier, these terms can similarly be considered as the
axial and radial components of the vehicle velocity at
the nose with respect to the cavity axis

a =
√

(zτ − z(t))2 + (x(t) − xτ )2 ×

× cos

(

θcτ − tg−1

(

zτ − z(t)

x(t) − xτ

))

, (18)

b =
√

(zτ − z(t))2 + (x(t) − xτ )2 ×

× sin

(

θcτ − tg −1

(

zτ − z(t)

x(t) − xτ

))

, (19)

a = cos(θcτ )(x(t) − xτ ) + sin(θcτ )(zτ − z(t)), (20)

b = sin(θcτ )(x(t) − xτ ) − cos(θcτ )(zτ − z(t)), (21)

ȧ = ẋ · cos(θcτ ) − ż · sin(θcτ ), (22)

ḃ = ẋ · sin(θcτ ) + ż · cos(θcτ ). (23)

As an aside, the impacting planing force
expressions can be solved for the non-delayed or
instantaneous case. In the case with no delay, the
cavity is directly related to the current conditions
at the nose, and the axis of the cavity is oriented
along the current velocity direction. For no delay,
θτ = θ(t), wτ = w(t), zτ = z(t), and b = ḃ = 0.
The expression for the immersion depth becomes
hnon_delay = a · w/V − ∆ where V is the forward
vehicle speed, as used in the vehicle dynamics modeli-
ng. The immersion rate simplifies to ḣnon_delay =

a · sec2(tg −1(w/V )) · q + ȧ ·w/V − Ṙc, where ȧ is the
total vehicle speed.

2.2. Integration into dynamics model

In order to incorporate the delay, the overall vehicle
path needs to be accurately tracked in the inertial
frame. The small angle assumptions can be removed
from the propagation of the depth state, z, and an
additional state for the x position can be added to
the equations of motion represented by Eqs. (1) and
(2). The expressions for ż and ẋ are given in Eqs. (24)
and (25).

ż = w · cos(θ) − V · sin(θ), (24)

ẋ = V · cos(θ) + w · sin(θ). (25)

The planing force is calculated from the Paryshev
representation [16]. The resulting planing force is
represented as shown in Eq. (26), where ∆ = Rc − r,
and h0 is the immersion depth at the aft of the vehi-
cle, as shown in Fig. 5.

FP = πρr2ḣ2 1

tg (α)

(

1 −
∆2

(h0 + ∆)2

)

. (26)

2.3. Comparison with results from previous delay

models

The vehicle parameters have been chosen to match
those available in the literature with m = 2,
Rn=0.0191 m, R =0.0508 m, L =1.8 m, n = 0.5, and
Cx0 = 0.82. Simulation runs have been carried out by
using a feedback control law that was also chosen to
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Fig. 9. Results for σ = 0.0242 and delayed system

match that from the literature and described by Eqs.
(27).

δe = 0,

δc = 15z − 30θ − 0.3q. (27)

The fins are assumed to be passive, while the
cavitator input is utilized in a linear state feedback
scheme. The feedback states are chosen such that
they could be potentially measurable in practice. In
the previous studies, this control law has been shown
to exhibit both stable and limit-cycle planing motion
depending on the vehicle speeds [3, 5, 6, 8, 18, 19].

Results obatined from a simulation conducted for
the delayed system at σ = 0.0242 (V = 83.51 m/s)
are shown in Fig. 9. The delay formulation requi-
res information about previous positions, so the si-
mulation is seeded with initial condition assumi-
ng the vehicle has been traveling along a straight
and level trajectory. Due to gravity, the aft end of
the vehicle dips into the cavity, and eventually, the
system displays stable planing behavior at this speed.
However, similar to what has been observed in previ-
ous supercavitating vehicle dynamics simulations,
when the authors utilize the same feedback formulati-
on [3, 6, 7], the vehicle response exhibits oscillations
as the speed is decreased (i.e., an increase in cavitati-
on number σ) and the cavity becomes tighter around
the vehicle.

The instantaneous cavity approach, which is
illustrated in Fig. 6), can also be modeled by allowi-
ng the delay value to approach 0. Results for the
delay-free case in the presence of non-steady plani-
ng are shown in Fig. 10. This simulation has been
conducted for a cavitation number of σ = 0.0242
(V = 83.51 m/s), and the system response is osci-
llatory. The results for this particular speed are
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Fig. 10. Results for σ = 0.0242 for non-delayed system,
as τ → 0

presented, since this is the opposite of what has
been observed in previous delay studies with steady
planing assumptions [12]. In the earlier studies, the
introduction of the delay was found to be destabilizi-
ng.

It should be noted that for sufficiently high speeds
(or equivalently, low cavitation numbers), the systems
with and without delay exhibits stable behavior.
As the cavitation number is increased (i. e., speed
is decreased), both the delayed and non-delayed
systems transition from stable fixed-point motions to
limit-cycle motions. However, the transition for the
non-delayed system occurs at a slightly higher speed.
It is within this window that the delayed system and
the non-delayed system demonstrate differing behavi-
or.

If the delay is taken as a parameter, and the
forward velocity is held constant at V = 83.51 m/s,
a projection of resulting steady-state behavior on the
w−q plane is as illustrated in Fig. 11. Here, the delay
is varied from close to 0 s (no delay), to 0.02156 s
(the nominal delay value of L/V ). The system can
be seen to transition from a limit-cycle motion to
an asymptotically stable equilibrium position, as the
delay is increased. By varying the delay with a fine
timestep of less then 0.00001 s, the critical value of
τ =0.01750 s is found; for the chosen vehicle speed,
limit cycles exist for τ < 0.01750 s.

3. MANEUVERING STUDIES

Appropriate tracking of the vehicle’s inertial ori-
entation is required in order to incorporate the
delay and non-steady planing effects. The modificati-
ons made to the vehicle dynamics model inherently
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Fig. 11. Effect of delay on long-time system response

removed the inertial small angle assumptions in
the equations of motion. These assumptions were
appropriate in previous studies since only fixed points
were generally considered. However, inertial tracking
opens the door for steady motions such as those that
occur during maneuvering. This may be important
for characterizing vehicle capabilities.

Maneuverability for non-linear systems, and parti-
cularly for non-smooth systems, can be difficult to
characterize since an “all out”, fully saturated control
inputs do not necessarily define the envelope of vehi-
cle motion capabilities. Supercavitating vehicles are
a good representative example, since fully saturated
control inputs can push the system into tailslap
behavior, which negatively affects the position control
of the vehicle. In this study, a numeric direct optimal
control approach is used, and in this approach, the
authors search for optimal controller inputs for defi-
ned vehicle maneuvers. Due to the complexity of the
supercavitating vehicle system, a numerical approach
is needed.

A feedback controller is utilized in order to reject
fast time-scale instabilities, such as due to the plani-
ng force. State feedback control as shown in Eqs. (27)
has been shown to stabilize the vehicle for straight
and level travel. However, an utilization of feedback
about the inertial positions z and θ can be detri-
mental to maneuvering along complex paths. Instead,
the inertial terms can be dropped and an inner-loop
control of the form as shown in Eq. (28) can be uti-
lized. This type of controller still aids in stabilizing
the system while allowing for travel along paths that

Fig. 12. Depiction of inner and outer loop controllers

are not straight and level

δc_inner = kinnerq. (28)

The feedback controller has the purpose of miti-
gating fast time-scale disturbances, while an outer-
loop controller is used to help guide the vehicle along
the desired maneuver. A diagram of how the two
controllers are integrated is illustrated in Fig. 12.

The outer-loop control is determined by an
optimization, which takes into account the desi-
red maneuver and the vehicle dynamics. Control
parameters that are used to define a control input
function are treated as variables in an optimization
scheme. The system dynamics are directly integrated
and the maneuver itself is treated as a constraint on
the optimization, thus, constraining the dynamics to
conform to the desired maneuver. The control inputs
can than be optimized for total time (which can also
be treated as a variable) or ending state, depending
on the type of maneuver considered.

In this work, the type of motion considered is a
move-to-point or homing maneuver. The goal of the
maneuver is to move to some desired end position
given some initial position and states. The authors
used the optimization scheme to search for the outer-
loop control inputs that helps accomplish this moti-
on in the shortest possible time. The basic optimi-
zation formulation can be described as follows. The
maneuver is divided into s time intervals, and the
control inputs are defined over each discrete interval
as shown in Fig. 13. The objective function can be
expressed as in Eq. (29). The optimization variables
are the final time T , and the uis, which are the
parameters used to define the control input over each
discrete interval. In the simplest case, the control
can be assumed as constant over each interval, and
in this situation, ui would represent the constant
control value (the cavitator actuation angle and the
fin actuation angle) over interval i. This function is
subject to the constraint shown in Eq. (30), where
xf is the desired final state that is defined by the
maneuver. The state values at end of each of the time
interval, can be calculated as shown in Eq. (31), for
i = 1...s and given x0. The integration of F (t, x, ui)
is determined by integrating the equations of motion.
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Fig. 13. Discretization method for the optimization
strategy used to generate controller input

Fig. 14. Diagram of trajectory generated using the
constant control inputs over discretized time segments

A depiction of the resulting maneuver is illustrated
in Fig. 14

minu1,u2,...,us,T (T ), (29)

xs = xf , (30)

xi =

t=iT/s
∫

t=(i−1)T/s,xi−1

F (t, x, ui)dt. (31)

The bounds on the control are easily applied as
bounds on the optimization variables, and additional
constraints can be added to bound the states or refine
the maneuver. With the dynamics and the constrai-
nts, the optimization can become quite complex. Si-
mple search algorithms based on penalty methods to
enforce the constraints were found to be the most
effective at finding good solutions. A more detailed di-
scussion of the optimization formulation is presented
in the first author’s dissertation [19].

For the following maneuvers, the inner-loop gain
is set at kinner = −0.9, and the cavitation number
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Fig. 15. Vehicle path with delayed, non-steady planing
force model, for run to (zf , xf ) = (−20, 80)

is chosen as σ = 0.03 which equates to a forward
speed of V = 75 m/s. The control function is
defined as a spline interpolation of control values
at s equally spaced discrete points throughout the
maneuver. The control values at these discrete poi-
nts are the parameters ui, which are solved for
through the optimization scheme. This formulation
generates a smooth outer-loop control input. The di-
screte control actuation angles are limited to δc/e ≤
π/2.5, and in order to maintain small vehicle slip
angles, the maximum allowable transverse speeds
during the maneuver is constrained to |w| ≤ 6 m/s.
The maneuver is discretized into s = 14 segments.
A move-to-point maneuver is shown in Fig. 15. The
vehicle begins with straight and level flight at poi-
nt (x, z) = (0, 0) m at time t = 0 s. The desired
end point is at (xf , zf ) = (80,−20) m. The resulti-
ng outer-loop control inputs are shown in Fig. 16.
The optimization is seeded with an initial guess of 0
control input with an arbitrary end time of 0.8 s. The
maneuver takes 1.1047 s. The resulting state time hi-
stories are shown in Fig. 17. The vehicle can be seen
to change angle of attack throughout the maneuver
as the transverse velocity and pitch rate change signs.

The move-to-point maneuver can also be consi-
dered with an obstacle or no-fly zone. Such a
maneuver is shown in Fig. 18. The vehicle again
is assumed to begin with straight and level travel
at point (x, z) = (0, 0) m at time t = 0 s wi-
th a desired endpoint of (xf , zf) = (80,−20) m.
A circular no-fly zone is added and is centered at
(xobst, zobst) = (40,−5) m with a radius of robst =
5 m. The obstacle is placed so that it interferes wi-
th the optimal trajectory found for the obstacle free
case. The circular no-fly zone can be integrated as a
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Fig. 16. Outer-loop Control inputs for delayed,
non-steady planing force model and run to
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Fig. 17. State time histories with delayed, non-steady
planing force model, for run to (zf , xf ) = (−20, 80) m

single constraint on the minimum distance between
vehicle trajectory and obstacle center as shown in Eq.
(32). Solutions were also found for smaller obstacle
radii and the 5 m obstacle approaches the largest
obstacle in which the search algorithm could find
an adequately feasible solution. The optimization
scheme can be sensitive to the initial guesses, and
both 0 seeds and previous solution seeds (using a
known feasible solution for a similar maneuver) were
attempted. This allowed for trajectories both above
and below the obstacle to be considered. The resulti-
ng trajectory was a slight modification from the
obstacle free case but the total maneuver time is not
heavily affected with the resulting maneuver taking
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Fig. 18. Vehicle trajectory with delayed, non-steady
planing force model, for run to (zf , xf ) = (−20, 80) m
with obstacle at (zobst, xobst) = (−5, 40), robst = 5 m
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Fig. 19. Planing run for delayed, non-steady planing
force model, for run to (zf , xf ) = (−20, 80) m with

obstacle at (zobst, xobst) = (−5, 40), robst = 5 m

1.1050 s

robst ≤ min
t

√

(x(t) − xobst)2 + (z(t) − zobst)2. (32)

A plot of the planing force throughout the
maneuver is shown in Fig. 19. The body is clearly seen
to be making intermittent contact with the cavity
surface. The change in direction of the planing force
shows a switch of planing surfaces as the trajectory
curvature changes throughout the maneuver. The
contact arises from the aggressive maneuvering di-
ctated by the obstacle size, endpoint location, and
time optimization.

For comparative purposes, results obtained for a
steady planing, instantaneous cavity simulation is
shown in Fig. 20. This simulation was run by usi-
ng the same conditions with σ = 0.03, kinner =

72 V. Nguyen, B. Balachandran



ISSN 1561 -9087 Прикладна гiдромеханiка. 2013. Том 15, N 1. С. 62 – 74

0 10 20 30 40 50 60 70 80 90
−25

−20

−15

−10

−5

0

5

x (m)

z 
(m

)

 

 

inner and outer loop
inner loop only
obstacle

Fig. 20. Vehicle trajectory with non-cylindrical steady
planing model without delay, for run to
(zf , xf ) = (−20, 80) m with obstacle at

(zobst, xobst) = (−5, 40), robst = 7 m

−0.9, (xf , zf ) = (80,−20) m, and (xobst, zobst) =
(40,−5) m. To conduct this simulation, the authors
utilized the same cavity model, and a non-cylindrical
planing force model as described in the authors’
previous work [8]. With the instantaneous assumpti-
on, the cavity orientation is directly related to the
current body orientation, and as such real-time cavi-
ty orientations can be easily produced. Plots of the
vehicle and cavity orientations at points along the
trajectory are included here for better visualizati-
on; the size has been exaggerated for illustrative
purposes. Here feasible solutions are found for a much
larger obstacle of robst = 7 m. This difference hints
at the limiting nature of properly incorporating the
delay and non-steady planing effects.

CONCLUDING REMARKS

The authors have presented a method to appropri-
ately account for vehicle body motion into the cavity
during planing in the presence of time-delay effects.
In previous studies, cavity interaction forces have
been estimated on the basis of the planing force
present during steady planing. Simulations are carri-
ed out by utilizing a cavitator feedback law used in
prior efforts [3, 5, 6, 8, 12]. A transition from steady
planing to oscillatory motion is observed as cavi-
tation number is increased (i.e., speed and cavi-
ty size is decreased). This transition can be simi-
larly observed in other vehicle dynamics simulati-
ons with various assumptions. However, the dynamic
behavior for these systems can vary greatly when
transitioning between different regions of operati-

on. As such, high-fidelity models are desired when
attempting to accurately predict vehicle motions.
The current interaction model is also compared to
a previous time-delay model in which the steady
planing assumption has been utilized. Contrary to
the previous study, the simulation results presented
here show that for a particular window of cavitati-
on numbers, incorporating the delay has a stabilizing
effect on the system dynamics.

The new interaction modeling requires accurate
inertial tracking of the cavity and body. A detailed
methodology is presented to properly account for the
cavity time-delay effects. These effects are caused by
the physical delay due to the fact that the cavity
at the aft end of the vehicle where planing occurs
relates to previous locations and orientations of the
cavitator. Also, removed are small angle assumptions
that were valid in previous studies of near fixed-point
operation (straight and level flight). The resulting
vehicle dynamics model is more general than previ-
ous formulations and this generality allows for studies
of dynamic maneuvering which include motions and
angles that deviate greatly from steady-state operati-
ons. Maneuvers were considered by using a numeric
optimizer to generate outer-loop control inputs while
a simple feedback controller was used to mitigate fast
disturbances. Advantageous use of planing is made
in the resulting optimized trajectories, and this idea
of using planing for vehicle operations can be traced
back to the studies of Logvinovich. The current work
can be used as a basis for studying the maneuverabi-
lity of different supercavitating vehicles.

1. Logvinovich G.V. Hydrodynamics of Free-Boundary
Flows.– Translated from Russian: Kiev, 1969.– 208 p.

2. Logvinovich G.V. Some problems in planing
surfaces // Trudy TsAGI, Translated from Russian.–
1980.– Vol. 2052.– P. 3–12.

3. Dzielski J., and Kurdila A. A benchmark control
problem for supercavitating vehicles and an initial
investigation of solutions // Journal of Vibration and
Control.– 2003.– Vol. 9.– P. 791–804.

4. Kulkarni S.S., and Pratap R. Studies on the dynamics
of a supercavitating projectile // Applied Mathemati-
cal Modelling.– 2000.– Vol. 24, N2.– P. 113–129.

5. Lin G., Balachandran B., and Abed E. Dynamics and
control of supercavitating vehicles // ASME Journal
of Dynamic Systems, Measurements, and Control.–
2008.– Vol. 130.– P. 021003-1–021003-11.

6. Lin G., Balachandran B., and Abed E. Nonlinear
dynamics and bifurcations of a supercavitating vehi-
cle // IEEE Journal of Oceanic Engineering.– 2007.–
Vol. 32.– P. 753–761.

7. Lin G., Balachandran B., and Abed E. Absolute
stability of second-order systems with asymmetric
sector boundaries // IEEE Transactions on
Automatic Control.– 2010.– Vol. 55, N 2.– P. 458–
463.

V. Nguyen, B. Balachandran 73



ISSN 1561 -9087 Прикладна гiдромеханiка. 2013. Том 15, N 1. С. 62 – 74

8. Nguen V., and Balachandran B. Supercavitating
vehicles with noncylindrical, nonsymmetric caviti-
es: Dynamics and instabilities // ASME Journal of
Computational and Nonlinear Dynamics.– Vol. 6, N
4.– 2011.– P. 041001-1–041001-11.

9. Kirschner I., Kring D.C., Stokes A.W., Fine N.E., and
Uhlman J.S. Control strategies for supercavitating
vehicles // Journal of Vibration and Control.– 2002.–
Vol.8, N 2.– P. 219–242.

10. Kirschner I., Uhlman J.S., and Perkins J. B. Overvi-
ew of High-Speed Supercavitating Vehicle Control //
AIAA Guidance, Navigation, and Control Conference
and Exhibit.– 2006.– Keystone.– P. Colorado USA.

11. Vanek B., Bokor J., Balas G. J., and Arndt R.
E. Longitudinal motion control of a high-speed
supercavitation vehicle // Journal of Vibration and
Control.– 2007.– Vol.13, N 2.– P. 159–184.

12. Hassouneh M. A., Nguyen V., Balachandran B.,
and Abed E. H. Stability analysis and control of
supercavitating vehicles with advection delay //
ASME Journal of Computational and Nonlinear
Dynamics.– 2013.– Vol.8, N 2.– P. 021003–021013.

13. Choi J.-Y., Ruzzene M., and Bauchau O.A. Dynamic
analysis of flexible supercavitating vehicles using
modal-based elements// SIMULATION.–2004.–

Vol.80, N 11.– P. 619–633.

14. Ruzzene M., Kamada R., Bottasso C.L., and
Scorcelletti F. Trajectory optimization strategies for
supercavitating underwater vehicles // Journal of Vi-
bration and Control.– 2008.– Vol.14, N 5.– P. 611–
644.

15. Ahn S.S. An integrated approach to the design
of supercavitating underwater vehicles // PhD Di-
ssertation, Georgia Institute of Technology, August
2007.

16. Paryshev E.V. Mathematical modeling of unsteady
cavity flows // Proc. Fifth International Symposium
on Cavitation (CAV2003), 2003, Osaka, Japan.

17. Dzielski J. Planing model discrepancies. Private
communication, 2004.

18. Nguyen V., Balachandran B., and Varghese A.
N. Supercavitating vehicle dynamics with non-
cylindrical, non-symmetric cavities // Proc. ASME
International Mechanical Engineering Congress and
Exposition.– 2007.– Seattle, WA, USA.– P. 265-272.

19. Nguyen V. Dynamics and control of non-smooth
systems with applications to supercavitating vehicles
// PhD Dissertation, University of Maryland, August
2011.

74 V. Nguyen, B. Balachandran


