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У результатi розв’язання задачi з вiльною межею отримано аналiтичний розв’язок
для iмпульсного удару цилiндричного тiла з довiльним поперечним перерiзом, за-
нуреного пiд незбурену поверхню води. Дослiджуваний випадок руху жорсткого
тiла в рiдинi кiнематично еквiвалентний випадку руху рiдини навколо нерухомого
жорсткого тiла з прискоренням рiдини. Задачу сформульовано в неiнерцiйнiй си-
стемi координат, пов’язанiй з тiлом. Її розв’язання дозволяє визначити всi характе-
ристики течiї в системi координат, пов’язанiй з незбуреною рiдиною до удару. Для
отримання комплексного потенцiалу та комплексної швидкостi, заданих у площинi
параметрiв, застосовано метод iнтегрального годографа. Крайову задачу зведено
до системи iнтегральних рiвнянь Фредгольма першого роду. Одне з них – вiдно-
сно величини швидкостi вiльної поверхнi, а iнше – вiдносно напряму швидкостi
на доннiй поверхнi. Поле швидкостей, iмпульсний тиск на поверхнi тiла та при-
єднану масу визначено в широкому дiапазонi глибин занурення для рiзних форм
поперечного перерiзу тiла: плоскої пластини, кругового цилiндра, прямокутника.
Вiдповiднi приєднанi маси знайдено залежно вiд глибини занурення. У мiру того
як значення глибини занурення збiльшується до нескiнченностi, приєднана маса
прямує до значення, яке вiдповiдає приєднанiй масi в необмеженiй областi рiди-
ни. Показано, що удари вгору та вниз iндукують однаковi величини швидкостi на
вiльнiй поверхнi й однаковi коефiцiєнти приєднаної маси, але з протилежними на-
прямками швидкостi руху. Отриманий розв’язок можна розглядати як наближення
першого порядку при розв’язаннi задачi методом малих часових рядiв. Наявнiсть
вiльної поверхнi не змiнює структуру потоку поблизу тiла, який визначає приєд-
нану масу. Тому можна очiкувати, що отриманi результати будуть вiдображати
реальнi ситуацiї, аналогiчнi тим, якi мають мiсце у випадку необмеженої областi
рiдини.
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1. ВСТУП

Поняття iмпульсного тиску бере початок з роботи Лагранжа (1983) [11], у якiй вiн
iнтерпретував добуток густини на потенцiал швидкостi як iмпульс тиску, необхiдний
для того, щоб раптово виштовхнути рiдину зi стану спокою до її поточної швидкостi. У
цьому контекстi варто також згадати першу роботу Жуковського (1984) [22] про зiткнен-
ня двох сфер, одна з яких наполовину занурена в рiдину – у нiй спочатку розглядалася
приєднана маса.

Концепцiя iмпульсного тиску отримала подальший розвиток у роботах фон Кармана
(1929) [33] i Вагнера (1932) [44], якi вивчали початковi стадiї бурхливих ударних водних
течiй стосовно умов посадки лiтака та спуску корабля на воду. Хейвлок 1949 р. дослi-
джував iмпульсний рух цилiндра зi сталою швидкiстю [55] i сталим прискоренням [66]
вiдповiдно. Вiн застосував лiнеаризовану граничну умову вiльної поверхнi та дослiдив
повну еволюцiю останньої. Тиванд i Мiлох (1995) [77] моделювали нестацiонарну нелi-
нiйну течiю на вiльнiй поверхнi за допомогою методу розкладу малого часового ряду.
При цьому враховувалися досить високi порядки членiв, щоб врахувати основний гра-
вiтацiйний вплив на висоту поверхнi та спрогнозувати гiдродинамiчну силу, яка дiє на
цилiндр. Пов’язану з цим проблему входу (виходу) води з круглого цилiндра теоретично
й експериментально дослiдив Грiнхау зi спiвавторами [88,99].

Iмпульсна концепцiя використовується для прогнозування впливу хвиль на морськi
та прибережнi споруди [1010], ударiв кораблiв [1111], iмпульсного вертикального руху тiла,
яке спочатку плаває на плоскiй вiльнiй поверхнi [1212], течiй, що проривають дамбу [1313],
iмпульсного плескання в контейнерах i резервуарах [1414], iмпульсного удару крапель об
тверду чи рiдку поверхню [1515]. Розв’язок, заснований на iмпульснiй концепцiї, може
призвести до появи нескiнченної швидкостi там, де вiльна поверхня зустрiчається з
твердим тiлом. У таких випадках iмпульсне наближення використовується як зовнiшнiй
розв’язок, який необхiдно узгодити з внутрiшнiм поблизу контактної лiнiї за допомогою
методу узгодженого асимптотичного розкладу [1212,1616–1818].

Математичнi моделi iмпульсних течiй базуються на теорiї нестисливої та безоберто-
вої течiї, тому можна ввести потенцiал швидкостi. Перед ударом вiльна поверхня вва-
жається плоскою, пiд час удару потенцiал на вiльнiй поверхнi залишається нульовим.
Крайову задачу для потенцiалу швидкостi можна записати так:

∆Φ′ = 0 в областi рiдини, (1)

Φ′ = 0 на вiльнiй поверхнi, (2)

𝜕Φ′

𝜕𝑛
= −𝑈𝑛𝑦 на поверхнi тiла, (3)

де 𝑈 – швидкiсть одразу пiсля удару; 𝑛⃗ – зовнiшня нормаль до поверхнi тiла; 𝑛𝑦 – її
компонента в напрямку осi 𝑌 .

Спiввiдношення (1)(1)–(3)(3) доповнюються умовою далекого поля:

|∇Φ′| → 0, 𝑥2 + 𝑦2 → ∞. (4)

Вивчення приєднаної маси становить iнтерес у зв’язку з концепцiєю дрейфового
об’єму, введеною в механiку рiдини Дарвiном 1953 р. [1919]. Використовуючи теорiю по-
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тенцiйної течiї, вiн показав, що для круглого цилiндра дрейфовий об’єм мiж початко-
вим i кiнцевим положеннями тiла (на нескiнченностi вище течiї та за течiєю вiдповiдно)
дорiвнює приєднаному об’єму маси цилiндра. Пiзнiше це було пiдтверджено для сфе-
ри [2020]. Петерс i Лозе [2121] представили експериментальне дослiдження для диска, який
iмпульсно приводиться в рух на площинi роздiлу нафта–вода. Вони показали, що iснує
часове вiкно унiверсальної поведiнки захопленої нафти для рiзних чисел Фруда.

На вiдмiну вiд попереднiх дослiджень, ми розглядаємо iмпульсний рух тiла, повнiстю
зануреного в рiдину. До цього спонукає знайомство з проблемами гiдродинамiки мор-
ських високошвидкiсних суден на пiдводних крилах: вони можуть зазнавати раптових
вертикальних ударiв, спричинених ударами хвиль об основний корпус [1111]. Iмпульсний
тиск на тiло, швидкiсть на вiльнiй поверхнi й вiдповiдна приєднана маса визначаю-
ться в широкому дiапазонi глибин занурення та для рiзних форм, включаючи плоску
пластину, круглий цилiндр i прямокутник.

2. КРАЙОВА ЗАДАЧА

Схему фiзичної областi течiї показано на Рис. 1Рис. 1а. Тiло, занурене пiд спокiйну вiльну
поверхню симетрично вiдносно осi 𝑌 , тому розглядається лише половина областi течiї.
Перед ударом, при 𝑡 = 0, тiло i рiдина перебувають у спокої. У момент 𝑡 = 0+ тiло
раптово починає рухатися з прискоренням 𝑎, спрямованим униз таким чином, що про-
тягом нескiнченно малого iнтервалу часу ∆𝑡 → 0 швидкiсть тiла досягає значення 𝑈 .
Задача про рух твердого тiла в рiдинi кiнематично еквiвалентна задачi про рух рiдкого
тiла навколо нерухомого твердого тiла з прискоренням 𝑎 на нескiнченностi. Визначимо
неiнерцiальну декартову систему координат 𝑋𝑌 , зв’язану з тiлом у точцi 𝐴, та iнер-
цiальну систему координат 𝑋 ′𝑌 ′, в якiй швидкiсть рiдини на нескiнченностi дорiвнює
нулю. Вважається, що тiло має довiльну форму, яка може бути визначена нахилом тiла
як функцiєю координати довжини дуги 𝑆: 𝛽𝑏 = 𝛽𝑏(𝑆). Рiдина вважається iдеальною та
нестисливою. Починаючи зi стану спокою, в усi наступнi моменти часу течiя залишає-
ться необертальною. Сила тяжiння й поверхневий натяг не враховуються.
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Рис. 1. Схема фiзичної площини (а), параметрична або 𝜁−площина (б)
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Прийнявши 𝑍 = 𝑋 + 𝑖𝑌 , уведемо комплекснi потенцiали

𝑊 (𝑍) = Φ(𝑋, 𝑌 ) + 𝑖Ψ(𝑋, 𝑌 ), 𝑊 ′(𝑍) = Φ′(𝑋, 𝑌 ) + 𝑖Ψ′(𝑋, 𝑌 ).

У цих термiнах поля швидкостей пов’язанi таким чином:

𝑑𝑊

𝑑𝑍
=
𝑑𝑊 ′

𝑑𝑍
− 𝑖𝑎𝑡, (5)

де 𝑎 – прискорення; 0 < 𝑡 < ∆𝑡; ∆𝑡→ 0. Iнтегруючи рiвняння (5)(5), знаходимо

𝑊 = 𝑊 ′ − 𝑖𝑎𝑡𝑍,
𝜕𝑊

𝜕𝑡
=
𝜕𝑊 ′

𝜕𝑡
− 𝑖𝑎𝑍,

𝜕Φ′

𝜕𝑡
=
𝜕Φ

𝜕𝑡
− 𝑎𝑌. (6)

Пiдставивши останнє рiвняння в рiвняння Бернуллi

𝜕Φ′

𝜕𝑡
+
𝑝

𝜌
+

|𝑉 ′|2

2
=
𝑝𝑎
𝜌

(7)

та проiнтегрувавши його на нескiнченно малому iнтервалi часу ∆𝑡→ 0, отримуємо

𝑃 =

Δ𝑡∫︁
0

𝑝𝑑𝑡 = −𝜌Φ + 𝜌𝑈𝑌. (8)

Тут 𝑝 i 𝑃 – тиск та iмпульсний тиск вiдповiдно; 𝑈 = 𝑎∆𝑡; |𝑉 ′| < ∞ – абсолютна
величина швидкостi; 𝑝𝑎 – тиск на вiльнiй поверхнi. Iнтеграли останнiх величин при
∆𝑡→ 0 прямують до нуля.

Уведемо безрозмiрнi величини, нормованi на 𝑈 , 𝐿 i 𝜌:

𝑣 = |𝑉 |/𝑈, 𝑥 = 𝑋/𝐿, 𝑦 = 𝑌/𝐿, ℎ = 𝐻/𝐿, 𝜑(𝑠) = Φ(𝑆)/(𝐿𝑈).

Вертикальну iмпульсну силу 𝐹𝑦 отримуємо iнтегруванням iмпульсного тиску на поверх-
нi тiла:

𝐹𝑦 = −2𝜌𝐿2𝑈

𝑠𝐶∫︁
𝑠𝐴

𝜑(𝑠) cos(𝑛, 𝑦)𝑑𝑠− 2𝜌𝑈𝐴 = 𝜌𝑚𝐿2𝑈, (9)

де 𝑠 – координата довжини дуги вздовж поверхнi тiла; 𝑠𝐴 i 𝑠𝐶 – довжини дуги для точок
𝐴 i 𝐶; 𝑚 – коефiцiєнт приєднаної маси; 𝐴 – площа поперечного перерiзу. Коефiцiєнт
2 вiдображає урахування сили, що дiє на частину тiла, симетричну вiдносно осi 𝑌 .
Унаслiдок симетрiї тiла вiдносно осi 𝑌 горизонтальна iмпульсна сила дорiвнює нулю.

Наша основна мета полягає у визначеннi потенцiалу швидкостi 𝜑(𝑠) вiдразу пiсля
удару.

3. КОНФОРМНЕ ВIДОБРАЖЕННЯ

Пряме знаходження комплексного потенцiалу 𝑤(𝑧) є проблематичним. Тому введе-
мо площину допомiжних параметрiв (𝜁−площину), як запропоновано 1890 р. Мiше-
лем [2222] i Жуковським [2323]. Сормулюємо крайовi задачi для комплексної функцiї швид-
костi 𝑑𝑤/𝑑𝑧 i для похiдної комплексного потенцiалу 𝑑𝑤/𝑑𝜁 – обидвi вони визначенi в
𝜁−площинi. Тодi похiдну функцiї вiдображення отримують як

𝑑𝑧

𝑑𝜁

𝑑𝑤/𝑑𝜁

𝑑𝑤/𝑑𝑧
.
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Її iнтегрування забезпечує вiдновлення функцiї вiдображення 𝑧 = 𝑧(𝜁), яка пов’язує
координати в параметричнiй i фiзичнiй площинах.

Оберемо перший квадрант 𝜁−площини (див. Рис. 1Рис. 1б) як область, яка вiдповiдає
областi рiдини у фiзичнiй площинi (Рис. 1Рис. 1а). Теорема про конформне вiдображення
дозволяє довiльно вибирати розташування трьох точок: початку координат 𝑂(𝜁 = 0),
𝐷 (𝐷′) на нескiнченностi та 𝐵 при 𝜁 = 1 (див. Рис. 1Рис. 1б). Положення точок 𝐴 (𝜁 = 𝑎) i 𝐶
(𝜁 = 𝑐) визначають, виходячи з розв’язку задачi та фiзичних мiркувань.

3.1. Вирази для комплексної швидкостi та похiдної комплексного потенцiалу

Тiло вважаємо нерухомим, тому його нахил i напрямок швидкостi збiгаються. Далi,
на цьому етапi ми припускаємо, що величина швидкостi на вiльнiй поверхнi – вiдома
функцiя параметричної змiнної 𝑣(𝜂). Тодi крайову задачу для комплексної швидкостi в
першому квадрантi параметричної площини можна записати таким чином:

𝜒(𝜉) = arg

(︂
𝑑𝑤

𝑑𝑧

)︂
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝛽𝑏(𝑎) + 𝛽0, 0 ≤ 𝜉 ≤ 𝑎,

−𝛽𝑏(𝜉), 𝑎 ≤ 𝜉 ≤ 𝑐,

−𝛽𝑏(𝑐)− 𝛽0, 𝑐 ≤ 𝜉 <∞.

(10)

𝑣(𝜂) =

⃒⃒⃒⃒
𝑑𝑤

𝑑𝑧

⃒⃒⃒⃒
𝜁=𝑖𝜂

, 0 ≤ 𝜂 <∞. (11)

Тут 𝛽0 = 𝜋/2; 𝛽𝑏(𝑎) = 𝜋; 𝛽𝑏(𝑐) = 0. Рiвняння (10)(10) задовольняє умови 𝜒(𝜉) = −𝜋/2
вздовж iнтервалiв 𝑂𝐴 i 𝐶𝐷 на лiнiї симетрiї та 𝜒(𝜉) = −𝛽𝑏(𝜉) вздовж тiла. Аргумент
комплексної швидкостi демонструє стрибки ∆ = −𝜋/2 в точках 𝐴 i 𝐶 при русi вздовж
межi в фiзичнiй площинi вiд точки 𝑂 до точки𝐷. Цю крайову задачу можна розв’язати,
застосувавши iнтегральну формулу [2424]

𝑑𝑤

𝑑𝑧
= 𝑣∞ exp

⎡⎣ 1
𝜋

∞∫︁
0

𝑑𝜒

𝑑𝜉
ln

(︂
𝜁 + 𝜉

𝜁 − 𝜉

)︂
𝑑𝜉 − 𝑖

𝜋

∞∫︁
0

𝑑 ln 𝑣

𝑑𝜂
ln

(︂
𝜁 − 𝑖𝜂

𝜁 + 𝑖𝜂

)︂
𝑑𝜂 + 𝑖𝜒∞

⎤⎦ , (12)

де 𝑣∞ = 𝑣(𝜂)𝜂→∞ i 𝜒∞ = 𝜒(𝜉)𝜉→∞. Пiдставляючи рiвняння (10)(10) i (11)(11) у спiввiдношення
(12)(12) та обчислюючи перший iнтеграл за схiдчастою змiною в точках 𝜁 = 𝑎 i 𝜁 = 𝑐,
отримуємо

𝑑𝑤

𝑑𝑧
= 𝑣∞

(︂
𝜁 − 𝑎

𝜁 + 𝑎

)︂1/2(︂
𝜁 − 𝑐

𝜁 + 𝑐

)︂1/2

× (13)

× exp

⎡⎣ 1
𝜋

𝑐∫︁
𝑎

𝑑𝛽𝑏
𝑑𝜉

ln

(︂
𝜁 − 𝜉

𝜁 + 𝜉

)︂
𝑑𝜉 − 𝑖

𝜋

∞∫︁
0

𝑑 ln 𝑣

𝑑𝜂
ln

(︂
𝜁 − 𝑖𝜂

𝜁 + 𝑖𝜂

)︂
𝑑𝜂 − 𝑖𝛽0

⎤⎦ .
Легко перевiрити, що для 𝜁 = 𝜉 аргументом правої частини (13)(13) є функцiя −𝛽𝑏(𝜉), а
для 𝜁 = 𝑖𝜂 модуль (13)(13) тотожно дорiвнює функцiї 𝑣(𝜂). Таким чином, граничнi умови
(10)(10) i (11)(11) задовольняються. Зауважимо також, що комплексна функцiя швидкостi має
нулi порядку 1/2, якi вiдповiдають течiї навколо кута 𝜋/2 в точках 𝐴 i 𝐶.
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Щоб отримати похiдну комплексного потенцiалу, спершу проаналiзуємо його пове-
дiнку. Перед ударом вiльна поверхня плоска й збiгається з вiссю (див. Рис. 1Рис. 1а). Тиск
уздовж вiльної поверхнi сталий. Тодi, як випливає з рiвняння Ейлера, набута в ре-
зультатi удару швидкiсть перпендикулярна до вiльної поверхнi, де тиск сталий, або
швидкiсть спрямована в напрямку осi 𝑌 . Отже, 𝑥-компонента швидкостi дорiвнює ну-
лю, а 𝑑𝑤 = (𝑑𝑤/𝑑𝑧)𝑑𝑧 = (𝑣𝑥− 𝑖𝑣𝑦)𝑑𝑥 = −𝑖𝑣𝑑𝑥. Таким чином, вiльна поверхня вiдповiдає
iнтервалу (−∞, 0) на уявнiй осi 𝜓 в 𝑤−площинi. Im (𝑤) = 0 уздовж прямої 𝑂𝐴𝐵𝐶𝐷
завдяки умовi непроникностi на тiлi 𝐴𝐵𝐶 та iнтервалах 𝑂𝐴 i 𝐶𝐷 лiнiї симетрiї. При
цьому Re (𝑤) змiнюється вiд нуля в точцi 𝑂 до −∞ на нескiнченностi 𝐷. Таким чи-
ном, область течiї у фiзичнiй площинi вiдповiдає третьому квадранту 𝑤-площини. Вони
пов’язанi мiж собою як 𝑤 = −𝐾𝜁, де 𝐾 – додатне дiйсне число, звiдки

𝑑𝑤

𝑑𝜁
= −𝐾. (14)

Проста форма комплексного потенцiалу 𝑤(𝜁) = −𝐾𝜁 + 𝑤𝑂 дозволяє виключити па-
раметр 𝜁 i отримати розв’язок у формi Кiрхгофа, для якого комплексна швидкiсть є
функцiєю комплексного потенцiалу. Тут 𝑤𝑂 – комплексний потенцiал у точцi 𝑂. По-
хiдна функцiї вiдображення отримується в результатi дiлення спiввiдношення (14)(14) на
(13)(13):

𝑑𝑧

𝑑𝜁
= −𝐾

(︂
𝜁 + 𝑎

𝜁 − 𝑎

)︂1/2(︂
𝜁 + 𝑐

𝜁 − 𝑐

)︂1/2

× (15)

× exp

⎡⎣ 1
𝜋

𝑐∫︁
𝑎

−𝑑𝛽𝑏
𝑑𝜉

ln

(︂
𝜁 − 𝜉

𝜁 + 𝜉

)︂
𝑑𝜉 +

𝑖

𝜋

∞∫︁
0

𝑑 ln 𝑣

𝑑𝜂
ln

(︂
𝜁 − 𝑖𝜂

𝜁 + 𝑖𝜂

)︂
𝑑𝜂 + 𝑖𝛽0

⎤⎦ .
Iнтегрування цього рiвняння дає функцiю вiдображення 𝑧 = 𝑧(𝜁), яка зв’язує пара-
метричну й фiзичну площини. Рiвняння (13)(13) i (14)(14) мiстять параметри 𝑎, 𝑐, 𝐾, а також
функцiї 𝑣(𝜂) i 𝛽𝑏(𝜉). Усi вони мають бути визначенi з фiзичних мiркувань i кiнематичної
граничної умови на вiльнiй поверхнi та на твердiй межi 𝑂𝐴𝐵𝐶𝐷.

3.2. Граничнi умови на тiлi

Довжини дуг 𝑠𝐴𝐵 мiж точками 𝐴 i 𝐵 i 𝑠𝐵𝐶 мiж точками 𝐵 i 𝐶, а також глибина
занурення визначаються таким чином:

1∫︁
𝑎

⃒⃒⃒⃒
𝑑𝑧

𝑑𝜁

⃒⃒⃒⃒
𝜁=𝜉

= 𝑠𝐴𝐵,

𝑐∫︁
1

⃒⃒⃒⃒
𝑑𝑧

𝑑𝜁

⃒⃒⃒⃒
𝜁=𝜉

= 𝑠𝐵𝐶 ,

𝑎∫︁
0

⃒⃒⃒⃒
𝑑𝑧

𝑑𝜁

⃒⃒⃒⃒
𝜁=𝜉

= ℎ. (16)

Невiдому функцiю 𝛽𝑏(𝜉) знаходять з iнтегро-диференцiального рiвняння

𝑑𝛽𝑏
𝑑𝜉

=
𝑑𝛽𝑏
𝑑𝑠

⃒⃒⃒⃒
𝑑𝑧

𝑑𝜁

⃒⃒⃒⃒
𝜁=𝜉

, (17)

де 𝛽𝑏(𝑠) – задана функцiя. Воно Рiвняння розв’язується методом iтерацiй з використа-
нням значення 𝑑𝛽𝑏/𝑑𝜉, обчисленого на попереднiй iтерацiї за спiввiдношенням (15)(15).
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3.3. Граничнi умови на на вiльнiй поверхнi

Iмпульсний удар характеризується нескiнченно малим iнтервалом часу ∆𝑡 → 0 –
таким, що положення вiльної поверхнi не змiнюється пiд час удару. З рiвнянь Ейлера
випливає, що iндукована ударом швидкiсть перпендикулярна до вiльної поверхнi (𝑝 =
𝑝𝑎):

arg

(︃
𝑑𝑤

𝑑𝑧

⃒⃒⃒⃒
𝜁=𝑖𝜂

)︃
= −𝛽0, 0 ≤ 𝜂 ≤ ∞. (18)

Взявши аргумент комплексної швидкостi зi спiввiдношення (13)(13), отримаємо для функцiї
𝑑 ln 𝑣/𝑑𝜂 iнтегральне рiвняння

∞∫︁
0

𝑑 ln 𝑣

𝑑𝜂
ln

⃒⃒⃒⃒
𝜂′ − 𝜂

𝜂′ + 𝜂

⃒⃒⃒⃒
𝑑𝜂′ + tg −1

(︁𝜂
𝑎

)︁
+ tg −1

(︁𝜂
𝑐

)︁
+

2

𝜋

𝑐∫︁
𝑎

𝑑𝛽𝑏
𝑑𝜉

tg −1

(︂
𝜂

𝜉

)︂
𝑑𝜉 = 0, (19)

яке є iнтегральним рiвнянням Фредгольма першого роду з логарифмiчним ядром. Його
розв’язок має вигляд

𝑣(𝜂) =
√︀
𝜂2 + 𝑎2

√︀
𝜂2 + 𝑐2 exp

⎛⎝ 1

𝜋

𝑐∫︁
𝑎

𝑑𝛽𝑏
𝑑𝜉

ln(𝜂2 + 𝜉2)𝑑𝜉

⎞⎠ . (20)

Подробицi щодо його знаходження подано в Додатоку.
Спiввiдношення (16)(16), (17)(17) i (19)(19) утворюють замкнену систему рiвнянь вiдносно па-

раметрiв 𝑎, 𝑐, 𝐾 та функцiй 𝛽𝑏(𝜉) i ln 𝑣(𝜂).

4. РЕЗУЛЬТАТИ

Отриманi результати наведено в системi координат, пов’язанiй з рiдиною на не-
скiнченностi. Спричинений iмпульсним ударом плоскої пластини розподiл швидкостi
на вiльнiй поверхнi показано на Рис. 2Рис. 2 для рiзних глибин занурення. Три положення
пластини позначенi товстими горизонтальними лiнiями – кожна має той самий колiр,
що й вiдповiдний розподiл швидкостi.

Одразу пiсля удару пластина набуває швидкостi −1. При вiдносно невеликiй глибинi
занурення ℎ < 0.25 швидкiсть рiдини над пластиною |𝑥| < 1 близька до −1, тобто
пластина захоплює рiдину й вони рухаються майже разом. За межами пластини, |𝑥| > 1
вiдбувається витiснення рiдини й вона рухається вгору, забезпечуючи баланс притоку
й витоку з цiєї областi. Чим бiльша глибина занурення пластини, тим слабкiше реагує
вiльна поверхня.

Залежностi розподiлу швидкостi вздовж вiльної поверхнi та iмпульсного тиску вiд
координати довжини дуги 𝑠 для круглого цилiндра показанi на Рис. 3Рис. 3а та б вiдповiдно.
Координати 𝑠 = 0 i 𝑠 = 𝜋 вiдповiдають верху (точка 𝐴) й низу (точка 𝐶) цилiндра.
У нижнiй частинi цилiндра тиск позитивний i слабо залежить вiд глибини занурення.
У верхнiй частинi тиск вiд’ємний, але зростає в мiру наближення цилiндра до вiльної
поверхнi.
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Рис. 2. Величина швидкостi на вiльнiй поверхнi (лiва вiсь)
для рiзних глибин занурення (права вiсь):

ℎ = 0.25 — червона неперервна; ℎ = 0.5 — синя штрихова;
ℎ = 1 — пурпурова штрих-пунктирна
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Рис. 3. Швидкiсть уздовж вiльної поверхнi (а)
та iмпульсний тиск уздовж цилiндра (б) для рiзних глибин занурення:

ℎ = 0.02 — червона неперервна; ℎ = 0.1 — синя штрихова; ℎ = 1 — пурпурова пунктирна;
ℎ = 3 — зелена штрих-пунктирна; ℎ = 10 — фiолетова штрих-пунктирна
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Рис. 4. Швидкiсть уздовж вiльної поверхнi (лiва вiсь), iндукована ударом прямокутника,
зануреного на глибину ℎ = 0.25, i положення самого прямокутника (права вiсь):

𝑏 = 0.1, 𝑚 = 2.272 — червона неперервна; 𝑏 = 1, 𝑚 = 2.786 — синя штрихова;
𝑏 = 3, 𝑚 = 3.241 — пурпурова пунктирна

Табл. 1. Коефiцiєнт приєднаної маси для рiзних форм тiла та глибини занурення
(* – необмежена область рiдини)

ℎ 0 0.02 0.05 0.1 0.3 0.5 1 5 50 ∞*

Пластинка 1.571 1.624 1.735 1.876 2.265 2.516 2.835 3.108 3.137 𝜋

Круг – 2.090 2.111 2.162 2.370 2.531 2.777 3.104 3.141 𝜋

Квадрат – 2.993 3.011 3.048 3.292 3.552 4.024 4.667 4.754 4.754

Реакцiя вiльної поверхнi, викликана iмпульсним ударом зануреного прямокутника,
показана на Рис. 4Рис. 4 для глибини ℎ = 0.25 i рiзних значень довжини 𝑏 сторони прямо-
кутника. На графiку верхнi сторони всiх прямокутникiв збiгаються (𝑦 = −ℎ), а нижнi
(𝑦 = −ℎ− 𝑏) показанi лiнiями вiдповiдних кольорiв.

Для прямокутника малої довжини (𝑏 = 0.1) розподiл швидкостi дуже близький до
розподiлу для пластинки на глибинi ℎ = 0.25, показаного на Рис. 2Рис. 2. Зi збiльшенням 𝑏
швидкiсть зменшується, тодi як зона вiльної поверхнi в напрямку осi 𝑋, на яку суттєво
впливає удар, розширюється. Така поведiнка забезпечує баланс мiж рухом рiдини за та
течiєю та проти неї.

Коефiцiєнти приєднаної маси для рiзних форм тiла наведено в Табл. 1Табл. 1. При ℎ → 0
(для плоскої пластини) 𝑚 → 𝜋/2. Це узгоджується з величиною приєднаної маси для
плоскої пластини, що плаває на вiльнiй поверхнi (розв’язок фон Кармана для удару).
При великiй глибинi занурення (ℎ = 50) вплив вiльної поверхнi стає незначним, а ко-
ефiцiєнт приєднаної маси наближається до значення, яке вiдповiдає приєднанiй масi в
необмеженiй рiдинi.
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Грiнхау i Янбао представили аналiтичну формулу Волтона для приєднаної маси
зануреного цилiндра [99]. Еквiвалентний вираз запропонував Венкатесан [2525]. Обидвi
формули мiстять елiптичнi iнтеграли i досить складнi для обчислень. Через це Грiнхау
i Янбао [99] запропонували полiномiальне наближення, яке забезпечує точнiсть у ме-
жах 2%. Зазначимо, що рiзниця мiж результатами, отриманими нами, та величинами,
розрахованими на основi апроксимацiйної формули, також становить < 2%.

5. IМПУЛЬСНИЙ УДАР УГОРУ

Проаналiзуємо, як напрямок зiткнення з зануреним тiлом впливає на поле швид-
костей. У системi координат, пов’язанiй iз тiлом, змiна напрямку удару призводить до
змiни напрямку швидкостi рiдини на нескiнченностi i на всiй твердiй межi, включаючи
тiло та лiнiю симетрiї. Рiвняння (10)(10) збереже свiй вигляд, якщо ми задамо значення
𝛽0 = −𝜋/2, 𝛽𝑏(𝑎) = 0 i 𝛽𝑏(𝑐) = −𝜋 або ж вiднiмемо 𝜋 вiд 𝜒(𝜉). У цьому випадку вираз
для комплексної швидкостi (13)(13) також залишається незмiнним. Похiдна комплексного
потенцiалу отримується з (14)(14) при змiнi знаку виразу. Таким чином, усi рiвняння зада-
чi зберiгають свiй вигляд, а величина швидкостi на вiльнiй поверхнi (20)(20) залишається
однаковою для напрямкiв удару як угору, так i вниз.

У системi координат, пов’язанiй з рiдиною, змiна напрямку удару призводить до змi-
ни напрямку швидкостi на вiльнiй поверхнi. При цьому абсолютна величина швидкостi
та коефiцiєнти приєднаної маси тi ж, що й при ударi вниз. Рис. 5Рис. 5 iлюструє розподiл
швидкостi на вiльнiй поверхнi, який’ вiдповiдає удару пластинки вгору, для тих самих
глибин занурення, що й на Рис. 2Рис. 2 (для удару вниз). Зауважимо, що при ударi вгору ха-
рактер розподiлу швидкостi на вiльнiй поверхнi бiля країв пластинки зумовлює вiдрив
потоку вiд країв пластини в бiльш пiзнiй час.
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Рис. 5. Те ж саме, що й на Рис. 2Рис. 2, але при ударi вгору:
ℎ = 0.25 — червона неперервна; ℎ = 0.5 — синя штрихова;

ℎ = 1 — пурпурова штрих-пунктирна

104



ISSN 2616-6135. ГIДРОДИНАМIКА I АКУСТИКА. 2024. Том 3(93), № 1. С. 9595–110110.

6. ВИСНОВКИ

Методом iнтегрального годографа знайдено аналiтичний розв’язок iмпульсного уда-
ру цилiндричного тiла пiд незбуреною вiльною поверхнею. При цьому поперечний пере-
рiз тiла може мати форму багатокутника чи довiльної гладкої криволiнiйної фiгури. У
статтi наведено кiлькiснi результати, отриманi для плоскої пластини, круглого цилiндра
та прямокутника. Рiвняння для комплексної швидкостi мiстить величину швидкостi на
вiльнiй поверхнi, аналiтичну форму якої визначено.

Вiдповiднi приєднанi маси визначають як функцiю глибини занурення. Коли глиби-
на занурення прямує до нескiнченностi, приєднана маса прямує до значення, що вiдпо-
вiдає приєднанiй масi в необмеженiй областi рiдини.

Показано, що удари вгору i вниз створюють однакову величину швидкостi на вiльнiй
поверхнi та однаковi коефiцiєнти приєднаної маси. Однак напрямок швидкостi проти-
лежний. Отриманий розв’язок можна розглядати як розв’язок першого порядку при
розв’язуваннi задачi методом малих часових рядiв.

Наявнiсть вiльної поверхнi не змiнює структуру потоку бiля тiла, який визначає при-
єднану масу. Тому можна очiкувати, що отриманi результати вiдображатимуть реальнi
ситуацiї, подiбнi до тих, що мають мiсце у випадку необмеженої областi рiдини.

ДОДАТОК

Розглянемо багатокутник, вписаний у задану гладку межу тiла. Нехай 𝑁𝑝 – кiль-
кiсть сторiн довжини 𝑙𝑖, нахил до якої становить 𝛽𝑝𝑖, а 𝜉𝑖, 𝑖 = 1, 2, . . . , 𝑁𝑝 – точки в
параметричнiй областi, якi вiдповiдають вершинам багатокутника. Тодi функцiю 𝛽𝑏(𝜉)
можна записати явним чином:

𝛽𝑏(𝜉) = 𝛽𝑏𝑖, 𝜉𝑖−1 < 𝜉 ≤ 𝜉𝑖, 𝑖 = 1, . . . 𝑁𝑝, (21)

де 𝜉0 = 𝑎, 𝜉𝑁𝑝 = 𝑐, 𝛽𝑝1 = 𝜋 and 𝛽𝑁𝑝 = 0. Пiдставляючи вираз (21)(21) у спiввiдношення (13)(13)
та обчислюючи iнтеграл за схiдчастою змiною функцiї 𝛽𝑏(𝜉) у точках 𝜉 = 𝜉𝑖, отримуємо
комплексну швидкiсть для тiла в формi багатокутника:

𝑑𝑤

𝑑𝑧
=

(︂
𝜁 − 𝑎

𝜁 + 𝑎

)︂1/2(︂
𝜁 − 𝑐

𝜁 + 𝑐

)︂1/2

𝑛×

×
𝑁𝑝∏︁
𝑖=1

(︂
𝜁 − 𝜉𝑖
𝜁 + 𝜉𝑖

)︂Δ𝛽𝑝𝑖/𝜋

𝑟 exp

⎡⎣− 𝑖

𝜋

∞∫︁
0

𝑑 ln 𝑣

𝑑𝜂
ln

(︂
𝜁 − 𝑖𝜂

𝜁 + 𝑖𝜂

)︂
𝑑𝜂 − 𝑖𝛽0

⎤⎦ . (22)

Гранична умова на вiльнiй поверхнi (18)(18) з комплексною швидкiстю (22)(22) призводить до
iнтегрального рiвняння

∞∫︁
0

𝑑 ln 𝑣

𝑑𝜂
ln

⃒⃒⃒⃒
𝜂′ + 𝜂

𝜂′ − 𝜂

⃒⃒⃒⃒
𝑑𝜂′ = 𝑓(𝜂), (23)

де

𝑓(𝜂) = tg −1
(︁𝜂
𝑎

)︁
+ tg −1

(︁𝜂
𝑐

)︁
+

2

𝜋

𝑁𝑏∑︁
𝑖=1

∆𝛽𝑏𝑖tg −1

(︂
𝜂

𝜉𝑖

)︂
.

105



ISSN 2616-6135. ГIДРОДИНАМIКА I АКУСТИКА. 2024. Том 3(93), № 1. С. 9595–110110.

Застосовуючи перетворення [2626]

𝑑 ln 𝑣

𝑑𝜂
= − 2

𝜋2

𝑑

𝑑𝜂

∞∫︁
𝜂

𝐹 (𝑢)𝑑𝑢√︀
𝑢2 − 𝜂2

, 𝐹 (𝑢) =
𝑑

𝑑𝑢

𝑢∫︁
0

𝑝𝑓(𝑝)√︀
𝑢2 − 𝑝2

𝑑𝑝, (24)

отримуємо розв’язок iнтегрального рiвняння (23)(23) у формi

𝑣(𝜂) =
√︀
𝜂2 + 𝑎2

√︀
𝜂2 + 𝑐2

𝑁𝑝∏︁
𝑖=1

(︀
𝜂2 + 𝜉𝑖

2
)︀Δ𝛽𝑏𝑖

𝜋 . (25)

Визначивши межу (25)(25) при 𝑁𝑏 → ∞ й використавши апроксимацiю

∆𝛽𝑏𝑖 =

(︂
𝑑𝛽𝑏
𝑑𝜉

)︂
𝑖

∆𝜉𝑖,

отримаємо рiвняння (20)(20).

REFERENCES
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Yu. A. Semenov, Yu. M. Savchenko, G. Yu. Savchenko, O. I. Naumova
Impulsive impact of a submerged body

An analytical solution of the impulsive impact of a cylindrical body with an arbitrary
cross-section submerged in an undisturbed water surface is obtained by solving a free
boundary problem. The studied case of a rigid body moving in a fluid is kinematically
equivalent to the case of a fluid moving around a fixed rigid body with acceleration.
The problem is formulated in a non-inertial coordinate system attached to the body.
After solving the problem, one can find all the flow characteristics in the coordinate
system attached to the undisturbed fluid before the impact. The integral hodograph
method is applied to derive the complex potential and the complex velocity, both de-
fined in a parameter plane. The boundary-value problem is reduced to a system of the
Fredholm integral equations of the first kind. One of them is in the velocity magnitude
at the free surface, and the other is in the velocity direction at the bottom surface.
The velocity field, the impulsive pressure on the body surface, and the added mass
are computed in a wide range of submergence depths for various cross-sectional shapes
of the body, such as a flat plate, a circular cylinder, and a rectangle. The associated
added masses are found depending on the submergence depth. As the submergence
depth tends to infinity, the added mass tends to the value corresponding to that in an
unbounded fluid domain. The upward and downward impacts are shown to generate
similar magnitudes of the velocity on the free surface and added mass coefficients but
with the opposite velocity directions. The obtained solution may be considered as the
first-order approximation when solving the problem by the method of small-time se-
ries. The presence of the free surface does not change the structure of the flow near
the body, determining the added mass. Therefore, the obtained results are expected
to reflect practical situations similar to those occurring in the case of the unbounded
fluid domain.

KEY WORDS: pressure impulse, added mass, complex potential, the integral hodo-
graph method

110


	ВСТУП
	КРАЙОВА ЗАДАЧА
	КОНФОРМНЕ ВІДОБРАЖЕННЯ
	Вирази для комплексної швидкості та похідної комплексного потенціалу
	Граничні умови на тілі
	Граничні умови на на вільній поверхні

	РЕЗУЛЬТАТИ
	ІМПУЛЬСНИЙ УДАР УГОРУ
	ВИСНОВКИ

